Lie algebras under constraints and non-bijective canonical transformations

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1988 J. Phys. A: Math. Gen. 211787
(http://iopscience.iop.org/0305-4470/21/8/015)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 06:38

Please note that terms and conditions apply.

Lie algebras under constraints and non-bijective canonical transformations

Maurice Kibler \dagger and Pavel Winternitz
Centre de Recherches Mathématiques, Université de Montréal, CP 6128-A, Montréal, Québec H3C 3J7, Canada

Received 26 October 1987

Abstract

The concept of a Lie algebra under constraints is developed in connection with the theory of non-bijective canonical transformations. A finite-dimensional vector space M, carrying a faithful linear representation of a Lie algebra L , is mapped into a lowerdimensional space \tilde{M} in such a manner that a subalgebra L_{0} of L is mapped into $D\left(\mathrm{~L}_{0}\right)=0$. The Lie algebra L under the constraint $D\left(\mathrm{~L}_{0}\right)=0$ is the largest subalgebra L_{1} of L that can be represented faithfully on \tilde{M}. If L_{0} is semisimple, then L_{1} is shown to be the centraliser cent L_{0}. If L is semisimple and L_{0} is a one-dimensional diagonal subalgebra of a Cartan subalgebra of L, then L_{1} is shown to be the factor algebra cent L_{0} / L_{0}. The latter two results are applied to non-bijective canonical transformations generalising the Kustaan-heimo-Stiefel transformation.

1. Introduction

In the recent years, the LC transformation (Levi-Civita 1956), an $R^{2} \rightarrow R^{2}$ map with discrete kernel, and the ks transformation (Kustaanheimo and Stiefel 1965), an $R^{4} \rightarrow R^{3}$ map with continuous kernel, have been investigated and used in various domains of theoretical physics. The lc transformation is closely related to the usual conformal map and is therefore connected to the algebra of ordinary complex numbers. The ks transformation may be considered as a byproduct of the theory of spinors and thus turns out to be connected to the algebra of ordinary quaternions (Kustaanheimo and Stiefel 1965, Blanchard and Sirugue 1981, Vivarelli 1983, Cornish 1984, Kibler and Négadi 1984b). The lC and ks transformations have been employed in classical and quantum mechanics and the reader is referred to the paper by Lambert and Kibler (1988) for an extensive bibliography. Let us just mention that the ks transformation is of interest in the study of dynamical systems either in a partial-differential-equation approach (Ikeda and Miyachi 1970, Boiteux 1972, Barut et al 1979, Kibler and Négadi 1984b) or in a path-integral approach (Duru and Kleinert 1979, Blanchard and Sirugue 1981, Young and DeWitt-Morette 1986) or in a phase-space approach (Gracia-Bondía 1984). In this direction, the ks transformation has been very recently applied to a quantum mechanical investigation of the Hartmann potential (Kibler and Winternitz 1987) and of a Aharonov-Bohm-like potential (Kibler and Négadi 1987).

There exist several non-bijective quadratic transformations generalising the LC and ks transformations. In particular, Kibler and Négadi (1984b) (see also Lambert and Kibler 1988) have studied a compact $R^{4} \rightarrow R^{4}$ transformation and a compact $R^{2} \rightarrow R^{+}$

[^0]transformation that parallel the LC and ks transformations, respectively. Furthermore, Iwai (1985) and Iwai and Rew (1985) have defined and used in symmetry reduction problems an $R^{4} \rightarrow R^{3}$ transformation which may be thought of as a non-compact extension of the ks transformation. General attempts to introduce non-bijective quadratic transformations have been achieved by Boiteux (1982), Polubarinov (1984) and Lambert et al (1986). Finally, Lambert and $\operatorname{Kibler}(1987,1988)$ have recently introduced and studied from both an algebraic and geometric viewpoint both (i) compact and non-compact $R^{2 m} \rightarrow R^{2 m}$ transformations with $2 m=2,4,8, \ldots$ extending the LC transformation and referred to as quasi-Hurwitz transformations and (ii) compact and non-compact $R^{2 m} \rightarrow R^{2 m-n}$ transformations with $(2 m, 2 m-n)=(2,1),(4,1),(4,3)$, $(8,1)$ and $(8,5)$ extending the ks transformation and referred to as Hurwitz transformations. Such a study is based on the use of anti-involutions of Cayley-Dickson algebras, the latter algebras being generalisations of the algebras of complex numbers, quaternions and octonions.

It is the aim of this paper to develop a group theoretical approach to the Hurwitz transformations $R^{2 m} \rightarrow R^{2 m-n}$, with $(2 m, 2 m-n)=(2,1),(4,3)$ and $(8,5)$, which comprise and extend the ks transformation. The whole philosophy of this approach may be summed up as follows. In view of the non-bijectivity of the $R^{2 m} \rightarrow R^{2 m-n}$ map, we may introduce, for $2 m$ fixed, $n=m-1+\delta(m, 1) 1$-forms which are not total differentials and equate them to zero. We can then associate a vector field to each of the $n 1$-forms arising in the $R^{2 m} \rightarrow R^{2 m-n}$ transformation. For $2 m$ fixed, each of the vector fields X_{i} with $i=1,2, \ldots, n$ is defined in the real symplectic Lie algebra $\operatorname{sp}(4 m, R)$ and the n vector fields together span a subalgebra L_{0} of $\operatorname{sp}(4 m, R)$. Indeed, the algebra L_{0} may be considered as a specific realisation of the Lie algebra of the ambiguity group discussed by Mello and Moshinsky (1975) and Moshinsky and Seligman (1978, 1979) in connection with general $R^{p} \rightarrow R^{p^{\prime}}$ (non-bijective) transformations with $p<p^{\prime}$. The algebra L_{0} will be called a constraint Lie algebra since its n generators X_{i} satisfy $X_{i} \psi=0$ for any function ψ of class $C\left(R^{2 m-n}\right)$. (In this vein, it is to be noted that the constraints $X_{i}=0(i=1,2, \ldots, n)$ written in the phase space $R^{2 m} \times R^{2 m}$ are nothing but primary constraints of the generalised Hamiltonian formalism developed by Dirac (1964).) At this stage, one may ask the question: what is the group theoretical significance of the constraint conditions (also called superselection rules by Boiteux (1982)) $X_{i} \psi=0$, $i=1,2, \ldots, n$? In other words, what is the subalgebra of $\mathrm{sp}(4 m, R)$ which survives when one forces the generators of $\mathrm{L}_{0} \subset \mathrm{sp}(4 m, R)$ to vanish? These questions lead to studying Lie algebras under constraints and this is done in the present paper by introducing various constraints in $\operatorname{sp}(4 m, R)$ for $2 m=2,4$ and 8 .

This article constitutes a non-trivial extension of a series of papers by Kibler and Négadi (1983a, b, 1984a). In the latter works a unique constraint $X=0$, corresponding to a constraint Lie algebra L_{0} of type so(2) for the ks transformation, is introduced into $\operatorname{sp}(8, R)$. This leads to a Lie algebra under constraints isomorphic to so(4,2). As a physical application, the non-invariance dynamical algebra so $(4,2)$ of the R^{3} hydrogen atom may be obtained from the non-invariance dynamical algebra $\operatorname{sp}(8, R)$ of the R^{4} isotropic harmonic oscillator. This important result is a group theoretical complement of the well known result that the ks transformation allows us to convert, in a Schrödinger, Feynman or Weyl-Wigner-Moyal formulation, the R^{3} hydrogen atom problem into the R^{4} isotropic harmonic oscillator problem. The $\operatorname{sp}(8, R)$-so $(4,2)$ connection has been further worked out (i) by Quesne (1986) in relation to the independent-electron dynamical group of intrashell many-electron states as well as with the correlated electron dynamical group of intrashell doubly excited states and
(ii) by Georgieva et al (1986) in relation to boson representations of symplectic algebras and their application to the theory of nuclear structure.

The Hurwitz transformations generalising the ks transformation are described in $\S 2$ in a unified and original way. Although the material contained in $\S 2$ turns out to be a byproduct of the work by Lambert and Kibler (1987, 1988), the adopted presentation is self-consistent and constitutes an alternative to the derivation of the Hurwitz transformations. Some general results on Lie algebras under constraints are presented as theorems in § 3, where they are also applied to the Hurwitz transformations of § 2. Constraint subalgebras L_{0} of symplectic Lie algebras L are investigated in $\S 4$ for cases where L_{0} and L are more general than for the cases corresponding to the Hurwitz transformations of $\$ 2$. The final § 5 is devoted to some concluding remarks.

2. Hurwitz transformations

We start from the (generalised) Hurwitz matrix

$$
A(\boldsymbol{u})=\left[\begin{array}{cccccccc}
-u_{0} & c_{1} u_{1} & c_{2} u_{2} & -c_{1} c_{2} u_{3} & c_{3} u_{4} & -c_{1} c_{3} u_{5} & -c_{2} c_{3} u_{6} & c_{1} c_{2} c_{3} u_{7} \tag{1}\\
u_{1} & -u_{0} & c_{2} u_{3} & -c_{2} u_{2} & c_{3} u_{5} & -c_{3} u_{4} & c_{2} c_{3} u_{7} & -c_{2} c_{3} u_{6} \\
u_{2} & -c_{1} u_{3} & -u_{0} & c_{1} u_{1} & c_{3} u_{6} & -c_{1} c_{3} u_{7} & -c_{3} u_{4} & c_{1} c_{3} u_{5} \\
u_{3} & -u_{2} & u_{1} & -u_{0} & c_{3} u_{7} & -c_{3} u_{6} & c_{3} u_{5} & -c_{3} u_{4} \\
u_{4} & -c_{1} u_{5} & -c_{2} u_{6} & c_{1} c_{2} u_{7} & -u_{0} & c_{1} u_{1} & c_{2} u_{2} & -c_{1} c_{2} u_{3} \\
u_{5} & -u_{4} & -c_{2} u_{7} & c_{2} u_{6} & u_{1} & -u_{0} & -c_{2} u_{3} & c_{2} u_{2} \\
u_{6} & c_{1} u_{7} & -u_{4} & -c_{1} u_{5} & u_{2} & c_{1} u_{3} & -u_{0} & -c_{1} u_{1} \\
u_{7} & u_{6} & -u_{5} & -u_{4} & u_{3} & u_{2} & -u_{1} & -u_{0}
\end{array}\right]
$$

in dimension $2 m=8$, where $u_{\alpha}(\alpha=0,1, \ldots, 7)$ are real numbers and $c_{k}= \pm 1(k=$ $1,2,3$). We also consider the column vector u, the metric matrix η and the conjugation matrix ε defined by (the sign \sim indicating matrix transposition):

$$
\begin{align*}
& \tilde{\boldsymbol{u}}=\left(-u_{0}, u_{1}, u_{2}, u_{3}, u_{4}, u_{5}, u_{6}, u_{7}\right) \\
& \eta=\operatorname{diag}\left(1,-c_{1},-c_{2}, c_{1} c_{2},-c_{3}, c_{1} c_{3}, c_{2} c_{3},-c_{1} c_{2} c_{3}\right) \tag{2}\\
& \varepsilon=\operatorname{diag}(1,-1,1,1,1,1,-1,-1) .
\end{align*}
$$

Let us finally introduce the matrices $A(\boldsymbol{u}), \boldsymbol{u}, \eta$ and ε in dimensions $2 m=4$ and 2 in the following manner: $A(u), \eta$ and ε are the $2 m \times 2 m$ matrices consisting of the first $2 m$ rows and columns of the corresponding matrices defined by equations (1) and (2), whereas \boldsymbol{u} is the column vector consisting of the first $2 m$ rows of the corresponding column vector defined by equation (2).

It can be verified that the matrices $A(u)$ for $2 m=2,4$ and 8 satisfy the properties

$$
\begin{equation*}
\tilde{A}(u) \eta A(u)=(\tilde{u} \eta u) \eta \quad \tilde{A}(u)=\eta\left[-A(u)-2 u_{0} I_{2 m}\right] \eta \tag{3}
\end{equation*}
$$

where $I_{2 m}$ stands for the $2 m \times 2 m$ unit matrix. The matrices $A(u)$ are of central importance in the celebrated Hurwitz (1898) theorem of arithmetics and its noncompact extension (Lambert and Kibler 1988). (The compact cases treated by Hurwitz correspond to $c_{1}=c_{2}=c_{3}=-1, c_{1}=c_{2}=-1$ and $c_{1}=-1$ for $2 m=8,4$ and 2 , respectively.) The matrices $A(\boldsymbol{u})$ in dimensions $2 m=2,4$ and 8 are related to the CayleyDickson algebras $\boldsymbol{A}\left(c_{1}\right), \boldsymbol{A}\left(c_{1}, c_{2}\right)$ and $\boldsymbol{A}\left(c_{1}, c_{2}, c_{3}\right)$ of dimensions $2 m=2,4$ and 8 and they may be written in terms of elements of Clifford algebras of degrees $2 m-1=1,3$ and 7, respectively (Lambert and Kibler 1988). In this respect, in the compact case
$c_{1}=c_{2}=c_{3}=-1$ for $2 m=8$, the Clifford algebra of degree $2 m-1=7$ has been recently considered by Shaw (1988) in connection with a new view of the $d=7$ Dirac algebra.

We are now in a position to define non-bijective quadratic transformations. We shall deal in turn with the cases $2 m=8,4$ and 2 .

2.1. The case $2 m=8$

Let us define the $R^{8} \rightarrow R^{5}$ map through

$$
\begin{equation*}
x=A(u) \varepsilon u . \tag{4}
\end{equation*}
$$

In detail, we have

$$
\begin{align*}
& x_{0}=u_{0}^{2}-c_{1} u_{1}^{2}+c_{2} u_{2}^{2}-c_{1} c_{2} u_{3}^{2}+c_{3} u_{4}^{2}-c_{1} c_{3} u_{5}^{2}+c_{2} c_{3} u_{6}^{2}-c_{1} c_{2} c_{3} u_{7}^{2} \\
& x_{2}=2\left(-u_{0} u_{2}+c_{1} u_{1} u_{3}+c_{3} u_{4} u_{6}-c_{1} c_{3} u_{5} u_{7}\right) \\
& x_{3}=2\left(-u_{0} u_{3}+u_{1} u_{2}-c_{3} u_{5} u_{6}+c_{3} u_{4} u_{7}\right) \tag{5}\\
& x_{4}=2\left(-u_{0} u_{4}+c_{1} u_{1} u_{5}-c_{2} u_{2} u_{6}+c_{1} c_{2} u_{3} u_{7}\right) \\
& x_{5}=2\left(-u_{0} u_{5}+u_{1} u_{4}+c_{2} u_{3} u_{6}-c_{2} u_{2} u_{7}\right) .
\end{align*}
$$

(In the general algebraic framework developed by Lambert and Kibler (1988), the $R^{8} \rightarrow R^{5}$ map given by (5) corresponds to the right Hurwitz transformation $\mathscr{K}_{\mathrm{R}}^{(7)}$ associated to the anti-involution j_{7} of $A\left(c_{1}, c_{2}, c_{3}\right)$.) Equation (5) may equally well be seen to result from the integration of $2 A(\boldsymbol{u}) \varepsilon \mathrm{d} \boldsymbol{u}$. Indeed, the column vector $2 A(\boldsymbol{u}) \varepsilon \mathrm{d} \boldsymbol{u}$ is the transpose of the row vector ($\mathrm{d} x_{0}, \omega_{1}, \mathrm{~d} x_{2}, \mathrm{~d} x_{3}, \mathrm{~d} x_{4}, \mathrm{~d} x_{5}, \omega_{6}, \omega_{7}$), where the 1 -forms
$\omega_{1}=2\left(-u_{1} \mathrm{~d} u_{0}+u_{0} \mathrm{~d} u_{1}+c_{2} u_{3} \mathrm{~d} u_{2}-c_{2} u_{2} \mathrm{~d} u_{3}+c_{3} u_{5} \mathrm{~d} u_{4}-c_{3} u_{4} \mathrm{~d} u_{5}-c_{2} c_{3} u_{7} \mathrm{~d} u_{6}+c_{2} c_{3} u_{6} \mathrm{~d} u_{7}\right)$
$\omega_{6}=2\left(-u_{6} \mathrm{~d} u_{0}-c_{1} u_{7} \mathrm{~d} u_{1}-u_{4} \mathrm{~d} u_{2}-c_{1} u_{5} \mathrm{~d} u_{3}+u_{2} \mathrm{~d} u_{4}+c_{1} u_{3} \mathrm{~d} u_{5}+u_{0} \mathrm{~d} u_{6}+c_{1} u_{1} \mathrm{~d} u_{7}\right)$
$\omega_{7}=2\left(-u_{7} \mathrm{~d} u_{0}-u_{6} \mathrm{~d} u_{1}-u_{5} \mathrm{~d} u_{2}-u_{4} \mathrm{~d} u_{3}+u_{3} \mathrm{~d} u_{4}+u_{2} \mathrm{~d} u_{5}+u_{1} \mathrm{~d} u_{6}+u_{0} \mathrm{~d} u_{7}\right)$
which are not total differentials, can be taken to be equal to zero in view of the non-bijectivity of the $R^{8} \rightarrow R^{5}$ map. The constraints $\omega_{1}=\omega_{6}=\omega_{7}=0$ make it possible to obtain

$$
\begin{equation*}
\mathrm{d} x_{0}^{2}-c_{2} \mathrm{~d} x_{2}^{2}+c_{1} c_{2} \mathrm{~d} x_{3}^{2}-c_{3} \mathrm{~d} x_{4}^{2}+c_{1} c_{3} \mathrm{~d} x_{5}^{2}=4 r(\mathrm{~d} \tilde{\boldsymbol{u}} \eta \mathrm{~d} \boldsymbol{u}) \tag{7}
\end{equation*}
$$

where the 'distance' $r=\tilde{\boldsymbol{u}} \eta \boldsymbol{u}$ satisfies

$$
\begin{equation*}
r^{2}=x_{0}^{2}-c_{2} x_{2}^{2}+c_{1} c_{2} x_{3}^{2}-c_{3} x_{4}^{2}+c_{1} c_{3} x_{5}^{2} \tag{8}
\end{equation*}
$$

The basic property to be used in $\S 3$ is

$$
\left[\begin{array}{c}
\partial / \partial x_{0} \tag{9}\\
(1 / 2 r) X_{1} \\
\partial / \partial x_{2} \\
\partial / \partial x_{3} \\
\partial / \partial x_{4} \\
\partial / \partial x_{5} \\
(1 / 2 r) X_{6} \\
(1 / 2 r) X_{7}
\end{array}\right]=(1 / 2 r) \eta A(u) \varepsilon \eta\left[\begin{array}{r}
-\partial / \partial u_{0} \\
\partial / \partial u_{1} \\
\partial / \partial u_{2} \\
\partial / \partial u_{3} \\
\partial / \partial u_{4} \\
\partial / \partial u_{5} \\
\partial / \partial u_{6} \\
\partial / \partial u_{7}
\end{array}\right]
$$

where the vector fields X_{1}, X_{6} and X_{7} associated to the 1 -forms ω_{1}, ω_{6} and ω_{7},
respectively, are

$$
\begin{align*}
& X_{1}=c_{1} u_{1} \partial / \partial u_{0}+u_{0} \partial / \partial u_{1}+c_{1} u_{3} \partial / \partial u_{2}+u_{2} \partial / \partial u_{3}+c_{1} u_{5} \partial / \partial u_{4}+u_{4} \partial / \partial u_{5} \\
&+c_{1} u_{7} \partial / \partial u_{6}+u_{6} \partial / \partial u_{7} \\
& X_{6}=-c_{2} c_{3} u_{6} \partial / \partial u_{0}+c_{2} c_{3} u_{7} \partial / \partial u_{1}+c_{3} u_{4} \partial / \partial u_{2}-c_{3} u_{5} \partial / \partial u_{3}-c_{2} u_{2} \partial / \partial u_{4} \\
&+c_{2} u_{3} \partial / \partial u_{5}+u_{0} \partial / \partial u_{6}-u_{1} \partial / \partial u_{7} \tag{10}\\
& X_{7}=c_{1} c_{2} c_{3} u_{7} \partial / \partial u_{0}-c_{2} c_{3} u_{6} \partial / \partial u_{1}-c_{1} c_{3} u_{5} \partial / \partial u_{2}+c_{3} u_{4} \partial / \partial u_{3}+c_{1} c_{2} u_{3} \partial / \partial u_{4} \\
& \quad-c_{2} u_{2} \partial / \partial u_{5}-c_{1} u_{1} \partial / \partial u_{6}+u_{0} \partial / \partial u_{7} .
\end{align*}
$$

The operators X_{1}, X_{6} and X_{7} vanish when acting on functions $\psi\left(x_{0}, x_{2}, x_{3}, x_{4}, x_{5}\right)$ of class $C^{1}\left(R^{5}\right)$ and satisfy the commutation relations

$$
\begin{align*}
& {\left[X_{1}, X_{6}\right]=-2 X_{7}} \\
& {\left[X_{6}, X_{7}\right]=-2 c_{2} c_{3} X_{1}} \tag{11}\\
& {\left[X_{7}, X_{1}\right]=2 c_{1} X_{6} .}
\end{align*}
$$

They therefore generate the Lie algebra $\mathrm{su}(2)$ or $\mathrm{su}(1,1)$ according to whether $\left(c_{1}, c_{2}, c_{3}\right)=(-1, \pm 1, \pm 1)$ or $\left(c_{1}, c_{2}, c_{3}\right) \neq(-1, \pm 1, \pm 1)$. Note that in view of $(10), X_{1}$, X_{6} and X_{7} are defined in the Lie algebra $\operatorname{sp}(16, R)$.

Following the geometrical analysis developed by Lambert and Kibler (1988), and adapting it to the anti-involution j_{7} inherent to the present work, the Hurwitz transformations characterised by equations (1)-(11) may be classified (up to homeomorphisms) into three types.

Type (c^{\prime}). For $\left(c_{1}, c_{2}, c_{3}\right)=(-1,-1,-1)$, the map $R^{8} \rightarrow R^{5}$ corresponds to the well known Hopf fibration on spheres $S^{7} \rightarrow S^{4}$ of compact fibre S^{3}.

Type ($\mathrm{c}^{\prime \prime}$). For ($\left.c_{1}, c_{2}, c_{3}\right)=(-1,1,1)$, the map $R^{8} \rightarrow R^{+} \times R^{4} \subset R^{5}$ corresponds to a fibration on hyperboloids, namely $R^{4} \times S^{3} \rightarrow R^{4}$ of compact fibre S^{3}.

Type (nc). For $\left(c_{1}, c_{2}, c_{3}\right) \neq(-1, \pm 1, \pm 1)$, the map $R^{8} \rightarrow R^{5}$ corresponds to another fibration on hyperboloids, namely $R^{4} \times S^{3} \rightarrow R^{2} \times S^{2}$ of non-compact fibre $R^{2} \times S^{1}$.

We shall see in § 3 that there are two types of Lie algebras under constraints that we can associate to the latter three types of Hurwitz transformations.

2.2. The case $2 m=4$

This case is especially simple to present since it can be obtained from the case $2 m=8$ by omitting everything involving $c_{3},\left(u_{4}, u_{5}, u_{6}, u_{7}\right),\left(x_{4}, x_{5}\right),\left(\omega_{6}, \omega_{7}\right)$ and (X_{6}, X_{7}). This yields the $R^{4} \rightarrow R^{3}$ map defined by

$$
\begin{align*}
& x_{0}=u_{0}^{2}-c_{1} u_{1}^{2}+c_{2} u_{2}^{2}-c_{1} c_{2} u_{3}^{2} \\
& x_{2}=2\left(-u_{0} u_{2}+c_{1} u_{1} u_{3}\right) \tag{12}\\
& x_{3}=2\left(-u_{0} u_{3}+u_{1} u_{2}\right)
\end{align*}
$$

and subjected to the constraint

$$
\begin{equation*}
\omega_{1}=2\left(-u_{1} \mathrm{~d} u_{0}+u_{0} \mathrm{~d} u_{1}+c_{2} u_{3} \mathrm{~d} u_{2}-c_{2} u_{2} \mathrm{~d} u_{3}\right)=0 \tag{13}
\end{equation*}
$$

In this case there is only one vector field, namely

$$
\begin{equation*}
X_{1}=c_{1} u_{1} \partial / \partial u_{0}+u_{0} \partial / \partial u_{1}+c_{1} u_{3} \partial / \partial u_{2}+u_{2} \partial / \partial u_{3} \tag{14}
\end{equation*}
$$

which belongs to the Lie algebra $\operatorname{sp}(8, R)$ with the property that $X_{1} \psi\left(x_{0}, x_{2}, x_{3}\right)=0$ for ψ in $C^{1}\left(R^{3}\right)$. The operator X_{1} generates the subalgebra so(2) for $\left(c_{1}, c_{2}\right)=(-1, \pm 1)$ and so(1,1) for $\left(c_{1}, c_{2}\right)=(1, \pm 1)$.

We thus get a transformation which coincides with the right Hurwitz transformation $\mathscr{K}_{\mathrm{R}}^{(1)}$ associated to the anti-involution j_{1} of $A\left(c_{1}, c_{2}\right)$, see Lambert and Kibler (1988). The special situation where $c_{1}=c_{2}=-1$ leads to the transformation worked out by Kustaanheimo and Stiefel (1965). The transformation recently introduced by Iwai (1985) is obtained by taking $c_{1}=-c_{2}=-1$.

Here again, we have three types of Hurwitz transformations which will give two types of Lie algebras under constraints. We extract from the work of Lambert and Kibler (1988) the following classification that may be readily understood as a restriction of the corresponding one for $2 m=8$.

Type (c^{\prime}). For $\left(\mathrm{c}_{1}, c_{2}\right)=(-1,-1)$, the map $R^{4} \rightarrow R^{3}$ corresponds to the famous Hopf fibration on spheres $S^{3} \rightarrow S^{2}$ of compact fibre S^{1}.

Type ($\mathrm{c}^{\prime \prime}$). For $\left(c_{1}, c_{2}\right)=(-1,1)$, the map $R^{4} \rightarrow R^{+} \times R^{2} \subset R^{3}$ corresponds to a fibration on hyperboloids, namely $R^{2} \times S^{1} \rightarrow R^{2}$ of compact fibre S^{1}.

Type (nc). For $\left(c_{1}, c_{2}\right)=(1,-1)$ or (1,1), the map $R^{4} \rightarrow R^{3}$ corresponds to another fibration on hyperboloids, namely $R^{2} \times S^{1} \rightarrow R \times S^{1}$ of non-compact fibre R.

2.3. The case $2 m=2$

This limiting case presents some specific features, with respect to the cases $2 m=4$ and 8, as can be seen in terms of Laplacian and d'Alembertian operators. Nevertheless, those points of relevance for what follows may be deduced from the case $2 m=4$ by simply suppressing the expressions with $c_{2},\left(u_{2}, u_{3}\right)$ and $\left(x_{2}, x_{3}\right)$. We are thus left with the $R^{2} \rightarrow R$ map

$$
\begin{equation*}
x_{0}=u_{0}^{2}-c_{1} u_{1}^{2} \tag{15}
\end{equation*}
$$

accompanied by the constraint

$$
\begin{equation*}
\omega_{1}=2\left(-u_{1} \mathrm{~d} u_{0}+u_{0} \mathrm{~d} u_{1}\right)=0 \tag{16}
\end{equation*}
$$

The corresponding vector field

$$
\begin{equation*}
X_{1}=c_{1} u_{1} \partial / \partial u_{0}+u_{0} \partial / \partial u_{1} \tag{17}
\end{equation*}
$$

is defined in the Lie algebra $\operatorname{sp}(4, R) \sim \operatorname{so}(3,2)$ and satisfies $X_{1} \psi\left(x_{0}\right)=0$ for ψ in $C^{1}(R)$. The operator X_{1} generates the subalgebra so(2) for $c_{1}=-1$ and so(1,1) for $c_{1}=1$. Equations (15)-(17) correspond to the right Hurwitz transformation $\mathscr{K}_{\mathrm{R}}^{(1)}$ associated to the anti-involution $j_{1} \equiv j_{0}$ of $\boldsymbol{A}\left(c_{1}\right)$ (cf Lambert and Kibler 1988).

It is obvious in this case that there are only two distinct Hurwitz transformations, which will produce two types of Lie algebras under constraints in §3. Indeed, we have the following classification.

Type (c). For $c_{1}=-1$, the map $R^{2} \rightarrow R^{+} \subset R$ corresponds to the fibration $S^{1} \rightarrow\{1\}$ of compact fibre S^{1}.

Type (nc). For $c_{1}=1$, the map $R^{2} \rightarrow R$ corresponds to the fibration $R \rightarrow\{1\}$ of non-compact fibre R.

3. Lie algebras under constraints

The study of non-bijective canonical transformations has led us to a mathematical problem that is of independent interest and has a wider realm of applications. It can be formulated as follows.

Consider a finite-dimensional Lie algebra L and one of its proper subalgebras L_{0}. Let L have a faithful finite-dimensional representation on some linear space M. Consider a non-bijective mapping from M to some lower-dimensional space \tilde{M} such that on \tilde{M} the subalgebra L_{0} is represented trivially by

$$
\begin{equation*}
D: \mathrm{L}_{0} \rightarrow D\left(\mathrm{~L}_{0}\right)=0 \tag{18}
\end{equation*}
$$

The questions that we pose are as follows.
(1) Is there a uniquely defined largest subalgebra \tilde{L} of L such that $L_{0} \subset \tilde{L} \subseteq L$ and having a non-faithful linear representation $D: L \rightarrow D(\tilde{\mathrm{~L}})$ on \tilde{M} with L_{0} as its kernel, i.e. satisfying equation (18)?
(2) If \tilde{L} exists, how one does find it and which is the largest subalgebra L_{1} of \tilde{L} that is represented faithfully in the representation $D(\tilde{\mathrm{~L}})$?

We start with some general Lie algebraic considerations and answer the above questions under some restrictions on L_{0} and L . We then specialise to the case of interest in the context of the Hurwitz transformations of $\S 2$, where we have $\mathrm{L}=$ $\operatorname{sp}(4 m, R)$ with $2 m=2,4$ and $8, \mathrm{~L}_{0}=\left\{X_{1}\right\}$ for $2 m=2$ or 4 and $\mathrm{L}_{0}=\left\{X_{1}, X_{6}, X_{7}\right\}$ for $2 m=8$.

As far as terminology is concerned, we call L_{0} a 'constraint Lie algebra' (the constraint being (18)) and L_{1} a 'Lie algebra under constraints' (the constraints being brought by (18)).

3.1. General discussion

Let us first introduce some concepts that we shall need below. Here L stands for an arbitrary Lie algebra, the Lie brackets [,] of which identify with commutators in a given linear representation.

Definition 1. The normaliser of a Lie algebra L_{0} in a Lie algebra L , with $\mathrm{L}_{0} \subset \mathrm{~L}$, is defined as

$$
\begin{equation*}
\operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0}=\left\{Z \in \mathrm{~L} \mid\left[Z, \mathrm{~L}_{0}\right] \subseteq \mathrm{L}_{0}\right\} \tag{19}
\end{equation*}
$$

Thus, nor L_{0} is the largest subalgebra of L in which L_{0} is an ideal. Given L and L_{0}, nor ${ }_{L} L_{0}$ is uniquely determined.

Definition 2. The centraliser of a Lie algebra L_{0} in a Lie algebra L , with $\mathrm{L}_{0} \subset \mathrm{~L}$, is defined as

$$
\begin{equation*}
\operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0}=\left\{Z \in \mathrm{~L} \mid\left[Z, \mathrm{~L}_{0}\right]=0\right\} \tag{20}
\end{equation*}
$$

Clearly, the subalgebra cent $L_{L} L_{0}$ of L is uniquely determined once L and L_{0} are given.
Directly from the definitions we see that we have

$$
\begin{equation*}
\mathrm{L}_{0} \subseteq \operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0} \quad \operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0} \subseteq \mathrm{~L} \quad \operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0} \subseteq \operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0} \tag{21}
\end{equation*}
$$

Let us now turn to the problem at hand. The algebra L_{0} is the kernel of the Lie algebra homomorphism $D: \tilde{\mathrm{L}} \rightarrow D(\tilde{\mathrm{~L}})$. Then, the Lie brackets

$$
\begin{equation*}
\left[D(\tilde{\mathrm{~L}}), D\left(\mathrm{~L}_{0}\right)\right]=0 \tag{22}
\end{equation*}
$$

are compatible with those of \tilde{L} only if we have

$$
\begin{equation*}
\left[\tilde{\mathrm{L}}, \mathrm{~L}_{0}\right] \subseteq \mathrm{L}_{0} . \tag{23}
\end{equation*}
$$

Hence, L_{0} must be an ideal in $\tilde{\mathrm{L}}$ and consequently we must have

$$
\begin{equation*}
\tilde{\mathrm{L}} \subseteq \operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0} . \tag{24}
\end{equation*}
$$

Let us now introduce a basis $\left\{X_{i} ; 1 \leqslant i \leqslant n\right\}$ for the Lie algebra L_{0} (of dimension n) and complement it to a basis $\left\{X_{i}, Y_{\alpha} ; 1 \leqslant i \leqslant n, 1 \leqslant \alpha \leqslant \nu\right\}$ for the Lie algebra nor $\mathrm{L}_{\mathrm{L}} \mathrm{L}_{0}$ (of dimension $n+\nu$). The Lie brackets for nor L_{L} in this basis are

$$
\begin{align*}
& {\left[X_{i}, X_{\jmath}\right]=a_{i j}^{k} X_{k}} \tag{25a}\\
& {\left[X_{i}, Y_{\alpha}\right]=b_{i \alpha}^{j} X_{j}} \tag{25b}\\
& {\left[Y_{\alpha}, Y_{\beta}\right]=c_{\alpha \beta}^{\gamma} Y_{\gamma}+d_{\alpha \beta}^{i} X_{i} .} \tag{25c}
\end{align*}
$$

If the basis $\left\{Y_{\alpha} ; 1 \leqslant \alpha \leqslant \nu\right\}$ of the factor 'algebra' $\mathrm{F}=$ nor $_{L} \mathrm{~L}_{0} / \mathrm{L}_{0}$ can be so chosen that $d_{\alpha \beta}^{i}=0(1 \leqslant \alpha, \beta \leqslant \nu, 1 \leqslant i \leqslant n)$, then the factor algebra F is itself a Lie algebra. Moreover, in this case we have

$$
\begin{equation*}
\mathrm{L}_{1}=\mathrm{F}=\left\{Y_{\alpha} ; 1 \leqslant \alpha \leqslant \nu\right\} \tag{26}
\end{equation*}
$$

i.e. the factor algebra F, that can be characterised as the external normaliser of L_{0} in L , is itself the Lie algebra L_{1} that is represented faithfully in $D(\tilde{\mathrm{~L}})$ with $\tilde{\mathrm{L}}=\operatorname{nor}_{\mathrm{L}} \mathrm{L}_{0}$.

Relation ($25 b$) provides an outer derivation of the Lie algebra L_{0} unless all structure constants $b_{i \alpha}^{j}$ vanish. To proceed further we restrict ourselves to constraint algebras L_{0} that do not have any outer derivation. According to a theorem proven by Zassenhaus (1952) (see also Jacobson 1979) this will be the case if L_{0} is a finite-dimensional semisimple Lie algebra over a field of characteristic zero. On the other hand, in the case where L_{0} is Abelian, a given element X_{i} of L_{0} will either commute with all basis elements Y_{α} or will be represented by a nilpotent matrix in the adjoint representation of $\tilde{\mathrm{L}}$. We thus arrive at the following results.

Lemma 1. Let the constraint Lie algebra L_{0} be a semisimple Lie algebra over a field of characteristic zero. Then, the structure constants in (25b) satisfy

$$
\begin{equation*}
b_{i \alpha}^{j}=0 \quad 1 \leqslant i, j \leqslant n ; 1 \leqslant \alpha \leqslant \nu \tag{27}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0}=\mathrm{L}_{0}(+) \operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0} \tag{28}
\end{equation*}
$$

where $(+)$ denotes the direct sum of vector spaces.
Proof. Equation (27) follows from the fact that a semisimple Lie algebra has no outer derivation. The result (28) is a consequence of (27) and the fact that a semisimple Lie algebra does not have a centre, hence the condition $\left[X, \mathrm{~L}_{0}\right]=0$ implies that X does not belong to L_{0}.

Lemma 2. Let L_{0} be a subalgebra of a Cartan subalgebra of a finite-dimensional semisimple Lie algebra Lover a field of characteristic zero. Then, the structure constants in (25b) satisfy

$$
\begin{equation*}
b_{i \alpha}^{j}=0 \quad 1 \leqslant i, j \leqslant n ; 1 \leqslant \alpha \leqslant \nu \tag{29}
\end{equation*}
$$

and we have

$$
\begin{equation*}
\operatorname{nor}_{L} L_{0}=\operatorname{cent}_{L} L_{0} \tag{30}
\end{equation*}
$$

Proof. A Cartan subalgebra of a semisimple Lie algebra L consists entirely of elements that are represented by simultaneously diagonalisable matrices in the adjoint representation of L, at least after a field extension. A set of such matrices does not contain any nilpotent matrix. The algebra L_{0} has no outer derivation so that $b_{i \alpha}^{j}=0$ in (25b). Since L_{0} is Abelian, we have $a_{i j}^{k}=0$ in (25a) and the result (30) follows.

We now turn to our main results on Lie algebras under constraints.
Theorem 1. Let L be a finite-dimensional Lie algebra over a field of characteristic zero and let L_{0} be a semisimple proper subalgebra of L. The largest subalgebra \tilde{L} of L that has a linear representation $D(\tilde{\mathrm{~L}})$ with L_{0} as its kernel is the normaliser

$$
\begin{equation*}
\tilde{\mathrm{L}}=\operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0}=\mathrm{L}_{0} \oplus \operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0} \tag{31a}
\end{equation*}
$$

The largest subalgebra L_{1} of $\tilde{\mathrm{L}}$ that can be represented faithfully in $D(\tilde{\mathrm{~L}})$ is the centraliser

$$
\begin{equation*}
\mathrm{L}_{1}=\operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0}=\text { nor }_{\mathrm{L}} \mathrm{~L}_{0} / \mathrm{L}_{0} \tag{31b}
\end{equation*}
$$

Proof. From lemma 1 we already know that nor ${ }_{L} L_{0}$ is the direct sum of the two disjoint vector spaces L_{0} and cent L_{0} and that we have $b_{i \alpha}^{j}=0$ in (25b). Since cent L_{L} is a Lie algebra and $X_{i}(1 \leqslant i \leqslant n)$ does not belong to cent L_{0}, we must have $d_{\alpha \beta}^{\prime}=0$ in (25c) and we obtain (30). Thus, $\tilde{L}=$ nor $_{L} L_{0}$ is a direct sum of Lie algebras and setting $D\left(\mathrm{~L}_{0}\right)=0$ is consistent with representing $\mathrm{L}_{1}=$ cent $\mathrm{L}_{\mathrm{L}} \mathrm{L}_{0}$ faithfully.

Theorem 2. Let L be a classical Lie algebra over the field R having an even-dimensional self-representation, i.e. a real form of $A_{2 N-3}, C_{N}$ or $D_{N}(N=2,3, \ldots)$ in Cartan's notations. Let L_{0} be a one-dimensional subalgebra of a Cartan subalgebra of L, namely one of the 'diagonal subalgebras' $[\mathrm{o}(2) \oplus \mathrm{o}(2) \oplus \ldots \oplus \mathrm{o}(2)]_{d}$ or $[\mathrm{o}(1,1) \oplus \mathrm{o}(1,1) \oplus \ldots \oplus$ $o(1,1)]_{d}$. Then, the largest subalgebra L of L that has a non-faithful representation $D(\tilde{\mathrm{~L}})$ with L_{0} as its kernel is uniquely determined to be

$$
\begin{equation*}
\tilde{\mathrm{L}}=\operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0}=\operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0} . \tag{32a}
\end{equation*}
$$

The largest subalgebra L_{1} of $\tilde{\mathrm{L}}$ that can be represented faithfully in $D(\tilde{\mathrm{~L}})$ is the factor algebra

$$
\begin{equation*}
\mathrm{L}_{1}=\operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0} / \mathrm{L}_{0} \tag{32b}
\end{equation*}
$$

which in this case is itself a Lie algebra.
Proof. From lemma 2 we already have nor $L_{L} L_{0}=\operatorname{cent}_{\mathrm{L}} \mathrm{L}_{0}$. We must show that under the conditions of the theorem we have

$$
\begin{equation*}
\operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0}=\mathrm{L}_{0} \oplus \mathrm{~L}_{1} . \tag{33}
\end{equation*}
$$

By hypothesis we have $n=1$ and therefore the Lie brackets ($25 a, b, c$) reduce to

$$
\begin{equation*}
\left[X_{1}, Y_{\alpha}\right]=0 \quad\left[Y_{\alpha}, Y_{\beta}\right]=c_{\alpha \beta}^{\gamma} Y_{\gamma}+d_{\alpha \beta}^{1} X_{1} \tag{34}
\end{equation*}
$$

Equations (34) describe a central extension of the Lie algebra $\left\{Y_{\alpha} ; 1 \leqslant \alpha \leqslant \nu\right\}$ and we must show that this extension is trivial, i.e. $d_{\alpha \beta}^{1}=0(1 \leqslant \alpha, \beta \leqslant \nu)$.

Consider first the non-compact case $\mathrm{L}_{0}=[\mathrm{o}(1,1) \oplus \mathrm{o}(1,1) \oplus \ldots \oplus \mathrm{o}(1,1)]_{d}$. We can choose a realisation of the defining faithful linear representation of L in which L_{0} is represented by the matrices

$$
\begin{equation*}
X=a \operatorname{diag}\left[I_{N},-I_{N}\right] \quad a \in R . \tag{35a}
\end{equation*}
$$

A simple calculation shows that in this representation we have

$$
\begin{equation*}
\operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0}=\operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0}=\left\{\operatorname{diag}[A, B] ; A, B \in R^{N \times N}\right\} \tag{35b}
\end{equation*}
$$

with possibly further restrictions on the matrices A and B depending on which particular classical Lie algebra L we are considering. In any case, independently of the choice of L, the derived algebra [cent L_{1}, cent L_{L}] of cent L_{L} is represented by matrices of 2 the form $\operatorname{diag}[A, B]$ with $\operatorname{Tr} A=\operatorname{Tr} B=0$. Hence, $\mathrm{L}_{0} \not \subset\left[\operatorname{cent}_{\mathrm{L}} \mathrm{L}_{0}\right.$, cent $\left._{\mathrm{L}} \mathrm{L}_{0}\right]$ and we obtain $d_{\alpha \beta}^{1}=0$ in (34) so that (33) holds.

Now consider the compact case $\mathrm{L}_{0}=[\mathrm{o}(2) \oplus \mathrm{o}(2) \oplus \ldots \oplus \mathrm{o}(2)]_{d}$. In an appropriate realisation of the definining representation of L we have L_{0} represented by the matrices

$$
X=b \operatorname{diag}[J, J, \ldots, J] \quad b \in R \quad J=\left[\begin{array}{rr}
0 & 1 \tag{36a}\\
-1 & 0
\end{array}\right]
$$

where the matrix J occurs N times along the diagonal of X. We obtain
$\operatorname{nor}_{\mathrm{L}} \mathrm{L}_{0}=\operatorname{cent}_{\mathrm{L}} \mathrm{L}_{0}=\left\{\left[\begin{array}{ccc}X_{11} & \ldots & X_{1 N} \\ \vdots & \ldots & \vdots \\ X_{\mathrm{N} 1} & \ldots & X_{\mathrm{NN}}\end{array}\right] ; X_{i j}=\left[\begin{array}{rr}a_{i j} & b_{i j} \\ -b_{i j} & a_{i j}\end{array}\right] ; a_{i j}, b_{i j} \in R ; 1 \leqslant i, j \leqslant N\right\}$
for the normaliser (and centraliser) of L_{0} in $\Delta=R^{2 N \times 2 N}$. Since ($36 b$) provides a real representation of $\operatorname{gl}(N, C)$, we have nor $\mathrm{L}_{0}=\operatorname{gl}(N, C)$. The normaliser of L_{0} in L will be a subalgebra of $\operatorname{gl}(N, C)$, obtained by imposing the appropriate involution condition, reducing Δ to L . In any case, L_{0} is not contained in the derived algebra $\operatorname{sl}(N, C)$ of $\operatorname{gl}(N, C)$ and still less in that of any subalgebra of $\operatorname{gl}(N, C)$. We again conclude that $d_{\alpha \beta}^{1}=0$ in (34) so that we obtain (33).

Finding the maximal subalgebra L_{1} of L that is represented faithfully when L_{0} is represented trivially is thus a simple task of linear algebra and boils down, in the cases of relevance in $\S 3.2$, to constructing the set of elements commuting elementwise with the elements of L_{0}. The Lie algebra L_{1} coincides with what Kibler and Négadi (1983a, b, 1984a) refer to as a Lie algebra under constraints. In their terminology, L_{1} is isomorphic to the algebra L subjected to the constraints

$$
\begin{equation*}
X_{i}=0 \quad 1 \leqslant i \leqslant n \tag{37}
\end{equation*}
$$

and may thus be thought of as the Lie algebra surviving when the constraints (37) are introduced inside L.

3.2. Application to Hurwitz transformations

Returning to the non-bijective quadratic transformations described in § 2, we identify L as $\operatorname{sp}(4 m, R)$ with $2 m=2,4$ or 8 . The basic problem is for $\mathrm{L}=\operatorname{sp}(16, R)$ and $\mathrm{L}_{0}=\operatorname{so}(3) \sim \mathrm{su}(2)$ or $\operatorname{so}(2,1) \sim \mathrm{su}(1,1)$ and corresponds to $2 m=8$. The two remaining problems concern $\mathrm{L}=\operatorname{sp}(8, R)$ for $2 m=4$ and $\mathrm{L}=\mathrm{sp}(4, R)$ for $2 m=2$ and both correspond to $\mathrm{L}_{0}=\operatorname{so}(2)$ or $\mathrm{so}(1,1)$. The problems for $2 m=4$ and 2 can be solved at the same time as the problem for $2 m=8$ by adapting the restriction process of $\S 2$.

We realise the algebra $\mathrm{sp}(4 m, R)$ by matrices X of $R^{4 m \times 4 m}$ satisfying

$$
X K+K \tilde{X}=0 \quad \text { with } \quad K=\left[\begin{array}{cc}
0 & I_{2 m} \tag{38}\\
-I_{2 m} & 0
\end{array}\right]
$$

so that we have
$X=\left[\begin{array}{cc}A & B \\ C & -\tilde{A}\end{array}\right] \quad A \in R^{2 m \times 2 m} ; B=\tilde{B} \in R^{2 m \times 2 m} ; C=\tilde{C} \in R^{2 m \times 2 m}$
(see Moshinsky and Winternitz (1980) for details). The matrix X depends on $2 m(4 m+$ 1) parameters as it must. The Lie algebra $\operatorname{sp}(4 m, R)$ is, on the one hand, realised by the matrices (39) and, on the other, by the bilinear forms

$$
\begin{equation*}
\alpha_{i j}=\partial_{i} u_{j}+u_{j} \partial_{i} \quad \beta_{i j}=\partial_{i} \partial_{j} \quad \gamma_{i j}=u_{i} u_{j} \tag{40}
\end{equation*}
$$

The representatives of the operators $\alpha_{i j}, \beta_{i j}$ and $\gamma_{i j}$ in terms of matrices X may be obtained according to a simple prescription (Moshinsky and Winternitz 1980).

For $2 m=2$ and $4, L_{0}\left(=s o(2)\right.$ or so(1,1)) is spanned by X_{1} of (17) and (14), respectively. For $2 m=8, \mathrm{~L}_{0}(=\mathrm{so}(3)$ or $\mathrm{so}(2,1))$ is spanned by the three operators X_{1}, X_{6} and X_{7} of (10). It is easy to represent the constraint operators X_{1}, X_{6} and X_{7} for $\operatorname{sp}(16, R)$ in terms of matrices X of equation (39) with $2 m=8$ by applying the above-mentioned prescription. The representative matrix of X_{1} so obtained may serve to generate the matrices that represent the constraint operators X_{1} for $\operatorname{sp}(8, R)$ and $\operatorname{sp}(4, R)$ by means of a subduction process which parallels the restriction process described in $\S 2$ for the coordinate transformations.

It is then a simple matter of calculation to find the centraliser of $\left\{X_{1}, X_{6}, X_{7}\right\}$ in $\operatorname{sp}(16, R)$. It is sufficient to search for the general matrix X which commutes with the representative matrices of the operators $X_{1}\left(c_{1}\right)$ and $X_{6}\left(c_{2}, c_{3}\right)$ corresponding to the case $2 m=8$. (The representative matrix of the operator $X_{7}\left(c_{1}, c_{2}, c_{3}\right)$ does not need to be considered since it imposes no further restriction.) This has been done in a brute force way by using the algebraic and symbolic programming system reduce. As a net result, the general representative matrix $X\left(c_{1}, c_{2}, c_{3}\right)$ of the centraliser of $\left\{X_{1}\left(c_{1}\right), X_{6}\left(c_{2}, c_{3}\right), X_{7}\left(c_{1}, c_{2}, c_{3}\right)\right\}$ in $\operatorname{sp}(16, R)$ is given by equation (39) with

$B=\left[\begin{array}{cccccccc}b_{11} & 0 & b_{13} & b_{14} & b_{15} & b_{16} & 0 & 0 \\ 0 & -c_{1} b_{11} & -b_{14} & -c_{1} b_{13} & -b_{16} & -c_{1} b_{15} & 0 & 0 \\ b_{13} & -b_{14} & b_{33} & 0 & 0 & 0 & c_{2} b_{15} & c_{2} b_{16} \\ b_{14} & -c_{1} b_{13} & 0 & -c_{1} b_{33} & 0 & 0 & -c_{2} b_{16} & -c_{1} c_{2} b_{15} \\ b_{15} & -b_{16} & 0 & 0 & c_{2} c_{3} b_{33} & 0 & -c_{3} b_{13} & -c_{3} b_{14} \\ b_{16} & -c_{1} b_{15} & 0 & 0 & 0 & -c_{1} c_{2} c_{3} b_{33} & c_{3} b_{14} & c_{1} c_{3} b_{13} \\ 0 & 0 & c_{2} b_{15} & -c_{2} b_{16} & -c_{3} b_{13} & c_{3} b_{14} & c_{2} c_{3} b_{11} & 0 \\ 0 & 0 & c_{2} b_{16} & -c_{1} c_{2} b_{15} & -c_{3} b_{14} & c_{1} c_{3} b_{13} & 0 & -c_{1} c_{2} c_{3} b_{11}\end{array}\right]$
and

$$
\begin{equation*}
C=\text { the same as } B \text { with } b_{i j} \rightarrow c_{i j} . \tag{41c}
\end{equation*}
$$

From the matrix $X\left(c_{1}, c_{2}, c_{3}\right)$ so obtained, we can perform the calculation of the rank and dimension of the Lie algebra under constraints L_{1}, as well as the dimension of
the maximal compact subalgebra of L_{1} in each of the cases $\mathrm{L}=\mathrm{sp}(4 m, R)$ with $2 m=8$, 4 and 2. This makes it possible to identify L_{1} in the following way. In the case $2 m=2$ or 4 , we find that cent $\left\{X_{1}\left(c_{1}\right)\right\}$ is a Lie algebra of dimension $4 m^{2}$ and rank $2 m$ with a maximal compact subalgebra of dimension $2 m^{2}$ for $c_{1}=-1$ and $m(2 m-1)$ for $c_{1}=1$. Therefore, in the cases $2 m=2$ and 4 , we have $\operatorname{cent}_{\mathrm{L}}\left\{X_{1}\left(c_{1}\right)\right\}=\mathrm{u}(m, m)$ or $\operatorname{gl}(2 m, R)$ for $c_{1}=-1$ or 1 , respectively. Consequently, $\mathrm{L}_{1}=\operatorname{cent}_{\mathrm{L}}\left\{X_{1}\left(c_{1}\right)\right\} /\left\{X_{1}\left(c_{1}\right)\right\}$ is identified as $\operatorname{su}(m, m)$ for $c_{1}=-1$ and $\operatorname{sl}(2 m, R)$ for $c_{1}=1$. In the case $2 m=8$, we find that cent $\left\{X_{1}\left(c_{1}\right), X_{6}\left(c_{2}, c_{3}\right), X_{7}\left(c_{1}, c_{2}, c_{3}\right)\right\}$ is a Lie algebra of dimension 28 , of rank 4 and of character (i.e. the number of non-compact generators minus the number of compact generators) -4 for $\left(c_{1}, c_{2}, c_{3}\right)=(-1, \pm 1, \pm 1)$ and +4 for $\left(c_{1}, c_{2}, c_{3}\right) \neq(-1, \pm 1, \pm 1)$. Consequently, $\mathrm{L}_{1}=\operatorname{cent}_{\mathrm{L}}\left\{X_{1}\left(c_{1}\right), X_{6}\left(c_{2}, c_{3}\right), X_{7}\left(c_{1}, c_{2}, c_{3}\right)\right\}$ is identified as so*(8) for $\left(c_{1}, c_{2}, c_{3}\right)=(-1, \pm 1, \pm 1)$ and so(4,4) for $\left(c_{1}, c_{2}, c_{3}\right) \neq(-1, \pm 1, \pm 1)$. The results for $2 m=8,4$ and 2 can be summed up and further documented as follows.

The case $2 m=8, \mathrm{~L}=\operatorname{sp}(16, R)$:
(c) $\mathrm{L}_{0}=\operatorname{so}(3)$ and $\mathrm{L}_{1}=\operatorname{so}(8) \sim \operatorname{so}(6,2)$ for $\left(c_{1}, c_{2}, c_{3}\right)=(-1,-1,-1)$ or $(-1,1,1)$ (nc) $\mathrm{L}_{0}=\operatorname{so}(2,1)$ and $\mathrm{L}_{1}=\operatorname{so}(4,4)$ for $\left(c_{1}, c_{2}, c_{3}\right) \neq(-1, \pm 1, \pm 1)$.
The case $2 m=4, \mathrm{~L}=\operatorname{sp}(8, R)$:
(c) $\mathrm{L}_{0}=\operatorname{so}(2)$ and $\mathrm{L}_{1}=\operatorname{su}(2,2) \sim \operatorname{so}(4,2)$ for $\left(c_{1}, c_{2}\right)=(-1,-1)$ or $(-1,1)$
(nc) $\mathrm{L}_{0}=\operatorname{so}(1,1)$ and $\mathrm{L}_{1}=\operatorname{sl}(4, R) \sim \operatorname{so}(3,3)$ for $\left(c_{1}, c_{2}\right)=(1,-1)$ or $(1,1)$.
The case $2 m=2, \mathrm{~L}=\mathrm{sp}(4, R)$:
(c) $\mathrm{L}_{0}=\operatorname{so}(2)$ and $\mathrm{L}_{1}=\operatorname{su}(1,1) \sim \operatorname{so}(2,1)$ for $c_{1}=-1$
(nc) $\mathrm{L}_{0}=\operatorname{so}(1,1)$ and $\mathrm{L}_{1}=\operatorname{sl}(2, R) \sim \operatorname{so}(2,1)$ for $c_{1}=1$.
It is to be mentioned that the result (c) for $2 m=4$ agrees with the one derived by Kibler and Négadi (1983a, b, 1984a) in the frame of a study of the hydrogen oscillator connection based on a bosonisation of the Pauli equations for the hydrogen atom.

We note the important result that, in each of the cases (n) and (nc), there is a correspondence between the types of Lie algebras under constraints and the types of fibres described in § 2. More precisely, the cases (c) correspond to compact fibres and the cases (nc) to non-compact fibres.

4. Symplectic Lie algebras under constraints

The resuls of $\S 3.2$ can be generalised to arbitrary symplectic Lie algebras L and various constraint Lie algebras L_{0}. Indeed, the results obtained in $\S 3.2$ may be derived in an alternative and more rational manner that points to further generalisations.

We shall first deal with two cases where L_{0} is a one-dimensional constraint algebra and shall thus apply theorem 2 . We shall then turn to two cases where L_{0} is a simple Lie algebra and shall thus apply theorem 1 .
4.1. The case $L_{0}=[o(1,1) \oplus o(1,1) \oplus \ldots \oplus o(1,1)]_{d}$ and $L=s p(2 N, R)$

We realise the non-compact diagonal algebra L_{0} by matrices of the type (39) with $2 m \rightarrow N$ and

$$
\begin{equation*}
A_{0}=a I_{N} \quad a \in R \quad B_{0}=C_{0}=0 . \tag{42}
\end{equation*}
$$

We immediately obtain

$$
\begin{equation*}
\operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0}=\operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0}=\{\operatorname{diag}[A,-\tilde{A}]\}=\operatorname{gl}(N, R)=\mathrm{L}_{0} \oplus \operatorname{sl}(N, R) . \tag{43}
\end{equation*}
$$

Thus, the Lie algebra under constraints is

$$
\begin{equation*}
\mathrm{L}_{1}=\operatorname{sl}(N, R) \subset \tilde{\mathrm{L}}=\operatorname{gl}(N, R) . \tag{44a}
\end{equation*}
$$

In particular, we have

$$
\begin{array}{ll}
\mathrm{L}_{1}=\operatorname{sl}(2, R) \sim \operatorname{so}(2,1) & \text { for } N=2 \tag{44b}\\
\mathrm{~L}_{1}=\operatorname{sl}(4, R) \sim \operatorname{so}(3,3) & \text { for } N=4
\end{array}
$$

in agreement with the results of $\S 3.2$.
4.2. The case $L_{0}=[o(2) \oplus o(2) \oplus \ldots \oplus o(2)]_{d}$ and $L=s p(4 N, R)$

We realise the compact diagonal algebra L_{0} as in (39) with $m \rightarrow N$ and
$A_{0}=a \operatorname{diag}[J, J, \ldots, J] \quad a \in R \quad J=\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right] \quad B_{0}=C_{0}=0$
where the matrix J occurs N times along the diagonal of A_{0}. A simple calculation yields the centraliser of L_{0} in L in the form (39) where the matrix A is an $N \times N$ matrix of elements

$$
\left[\begin{array}{rr}
a_{i j}^{1} & a_{i j}^{2} \tag{46a}\\
-a_{i j}^{2} & a_{1 j}^{1}
\end{array}\right] \quad a_{i j}^{k} \in R ; 1 \leqslant i, j \leqslant N ; 1 \leqslant k \leqslant 2
$$

and where the matrices B and C are given by

$$
\begin{array}{ll}
B=A & \text { with } a_{i j}^{k} \rightarrow b_{i j}^{k} \tag{46b}\\
C=A & \text { with } a_{i j}^{k} \rightarrow c_{i j}^{k}
\end{array} \quad b_{i i}^{2}=c_{i i}^{2}=0 ; 1 \leqslant i \leqslant N .
$$

We thus obtain

$$
\begin{equation*}
\operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0}=\operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0}=\mathrm{u}(N, N)=\mathrm{L}_{0} \oplus \operatorname{su}(N, N) \tag{47}
\end{equation*}
$$

and the Lie algebra under constraints is

$$
\begin{equation*}
\mathrm{L}_{1}=\operatorname{su}(N, N) \subset \tilde{\mathrm{L}}=\mathrm{u}(N, N) \tag{48a}
\end{equation*}
$$

In particular, we have

$$
\begin{array}{ll}
\mathrm{L}_{1}=\operatorname{su}(1,1) \sim \operatorname{so}(2,1) & \text { for } N=1 \\
\mathrm{~L}_{1}=\operatorname{su}(2,2) \sim \operatorname{so}(4,2) & \text { for } N=2 \tag{48b}
\end{array}
$$

as in §3.2.
4.3. The case $L_{0}=[s l(2, R) \oplus s l(2, R) \oplus \ldots \oplus s l(2, R)]_{d}$ and $L=s p(8 N, R)$

We realise the non-compact diagonal algebra L_{0}, of dimension three, by the matrices (39) with $m \rightarrow 2 N$ and
$A_{0}=\operatorname{diag}[J, J, \ldots, J] \quad J=\left[\begin{array}{rr}a & b \\ c & -a\end{array}\right] \quad a, b, c \in R \quad B_{0}=C_{0}=0$
where the matrix J occurs $2 N$ times along the diagonal of A_{0}. A straightforward calculation yields the centraliser of L_{0} in $\mathrm{L}=\operatorname{sp}(8 N, R)$ in the form (39) where the matrices A, B and C are given by

$$
\begin{aligned}
& A=\left[\begin{array}{ccccccc}
a_{11} & 0 & a_{12} & 0 & \ldots & a_{1,2 N} & 0 \\
0 & a_{11} & 0 & a_{12} & \ldots & 0 & a_{1,2 N} \\
a_{21} & 0 & a_{22} & 0 & \ldots & a_{2,2 N} & 0 \\
0 & a_{21} & 0 & a_{22} & \ldots & 0 & a_{2,2 N} \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
a_{2 N, 1} & 0 & a_{2 N, 2} & 0 & \ldots & a_{2 N, 2 N} & 0 \\
0 & a_{2 N, 1} & 0 & a_{2 N, 2} & \ldots & 0 & a_{2 N, 2 N}
\end{array}\right] \\
& B=\left[\begin{array}{ccccccc}
0 & 0 & 0 & b_{12} & \ldots & 0 & b_{1,2 N} \\
0 & 0 & -b_{12} & 0 & \ldots & -b_{1,2 N} & 0 \\
0 & -b_{12} & 0 & 0 & \ldots & 0 & b_{2,2 N} \\
b_{12} & 0 & 0 & 0 & \ldots & -b_{2,2 N} & 0 \\
\vdots & \vdots & \vdots & \vdots & \ldots & \vdots & \vdots \\
0 & -b_{1,2 N} & 0 & -b_{2,2 N} & \ldots & 0 & 0 \\
b_{1,2 N} & 0 & b_{2,2 N} & 0 & \ldots & 0 & 0
\end{array}\right] \\
& C=B \text { with } b_{i j} \rightarrow c_{i j}
\end{aligned}
$$

The latter realisation shows that cent L_{L} is a simple Lie algebra of dimension $2 N(4 N-$ 1) and rank $2 N$ with a maximal compact subalgebra of dimension $2 N(2 N-1)$. We can thus identify the centraliser and the Lie algebra under constraints as

$$
\begin{equation*}
\mathrm{L}_{1}=\operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0}=\operatorname{so}(2 N, 2 N) . \tag{51}
\end{equation*}
$$

For $N=2$, we recover the result $L_{1}=s o(4,4)$ of $\S 3.2$ corresponding to $L_{0}=\operatorname{so}(2,1)$ and $\mathrm{L}=\mathrm{sp}(16, R)$.

4.4. The case $L_{0}=[o(3) \oplus o(3) \oplus \ldots \oplus o(3)]_{d}$ and $L=s p(8 N, R)$

We realise the compact diagonal algebra L_{0}, of dimension three, by the matrices (39) with $m \rightarrow 2 N$ and
$A_{0}=\operatorname{diag}[J, J, \ldots, J] \quad J=\left[\begin{array}{cccc}0 & a & b & c \\ -a & 0 & -c & b \\ -b & c & 0 & -a \\ -c & -b & a & 0\end{array}\right] \quad a, b, c \in R \quad B_{0}=C_{0}=0$
where the matrix J occurs N times along the diagonal of A_{0}. The centraliser of L_{0} in $\mathrm{L}=\operatorname{sp}(8 N, R)$ can be easily calculated. It is realised by matrices of the form (39) where A, B and C are $N \times N$ matrices in which each entry is a 4×4 (real) matrix of the type

$$
X_{i j}=\left[\begin{array}{rrrr}
x_{i j}^{0} & x_{i j}^{1} & x_{1 j}^{2} & x_{i j}^{3} \tag{53}\\
-x_{i j}^{1} & x_{i j}^{0} & x_{i j}^{3} & -x_{i j}^{2} \\
-x_{i j}^{2} & -x_{i j}^{3} & x_{i j}^{0} & x_{i j}^{1}
\end{array}\right] \quad x_{i j}^{k} \in R ; 1 \leqslant i, j \leqslant N ; 0 \leqslant k \leqslant 3 .
$$

For $X \equiv B$ and C, we have $B_{i j}=\tilde{B}_{j i}$ and $C_{i j}=\tilde{C}_{j i}(1 \leqslant i, j \leqslant N)$. We find that cent L_{L} is a simple Lie algebra of dimension $2 N(4 N-1)$ and rank $2 N$ with a maximal compact subalgebra of dimension $4 N^{2}$. We can thus identify cent L_{0} as so* $(4 N)$ so that we end up with

$$
\begin{equation*}
\mathrm{L}_{1}=\operatorname{cent}_{\mathrm{L}} \mathrm{~L}_{0}=\mathrm{so}^{*}(4 N) \tag{54}
\end{equation*}
$$

For $N=1$, we have so $^{*}(4) \sim \operatorname{so}(3) \oplus \operatorname{so}(2,1)$. For $N=2$, we recover the result $\mathrm{L}_{1}=$ so* $(8) \sim \mathrm{so}(6,2)$ of $\S 3.2$ corresponding to $\mathrm{L}_{0}=\mathrm{so}(3)$ and $\mathrm{L}=\mathrm{sp}(16, R)$.

5. Concluding remarks

The main mathematical result of this paper can be summarised in the following manner. Consider a finite-dimensional Lie algebra L and a proper subalgebra L_{0} of L. Then, the largest Lie algebra $\tilde{\mathrm{L}}$, satisfying $\mathrm{L}_{0} \subset \tilde{\mathrm{~L}} \subseteq \mathrm{~L}$ and having a non-faithful linear representation in which L_{0} is represented trivially, is the normaliser nor L_{0} of L_{0} in L. If the normaliser allows a decomposition

$$
\begin{equation*}
\operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0}=\mathrm{L}_{0} \oplus \mathrm{~L}_{1} \tag{55}
\end{equation*}
$$

into the direct sum of L_{0} and a Lie algebra L_{1}, then L_{1} can be represented faithfully in a Lie algebra homomorphism $D:$ nor $_{L} \mathrm{~L}_{0} \rightarrow D$ (nor L_{L}) with L_{0} as its kernel.

The condition that the decomposition (55) should hold is a restriction on the algebras L_{0} and L. We have shown that equation (55) always holds for the constraint algebras L_{0} and the algebras L occurring in the $R^{2 m} \rightarrow R^{2 m-n}$ non-bijective canonical transformations with $(2 m, 2 m-n)=(2,1),(4,3)$ and $(8,5)$.

If the decomposition (55) does not hold, then it may be necessary to enlarge the kernel of the homomorphism for nor L_{L} / L_{0} to be a Lie algebra. To see this, consider the example where $\mathrm{L}=\operatorname{sp}(4, R)$ (realised as in (39) with $m=1$) and L_{0} is the onedimensional nilpotent Lie algebra

$$
\mathrm{L}_{0}=\left\{\left[\begin{array}{cccc}
0 & 0 & b_{11} & 0 \tag{56}\\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] ; b_{11} \in R\right\}
$$

We find that

$$
\operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0}=\left\{\left[\begin{array}{cccc}
a_{11} & a_{12} & b_{11} & b_{12} \tag{57}\\
0 & a_{22} & b_{12} & b_{22} \\
0 & 0 & -a_{11} & 0 \\
0 & c_{22} & -a_{12} & -a_{22}
\end{array}\right] ; a_{1 j}, b_{i j}, c_{i j} \in R\right\}
$$

In this case, nor $\mathrm{L}_{\mathrm{L}} \mathrm{L}_{0}$ is a Lie algebra isomorphic to the 'optical Lie algebra' opt(2,1) (see Patera et al 1977, Burdet et al 1978). Denoting $A_{i j}$ the element of nor $\mathrm{L}_{\mathrm{L}} \mathrm{L}_{0}$ obtained by setting $a_{i j}=1$ and all other entries equal to zero in equation (57), and similarly for $B_{i j}$ and $C_{i j}$, we have

$$
\begin{equation*}
\left[A_{12}, B_{12}\right]=2 B_{11} \in \mathrm{~L}_{0} \tag{58}
\end{equation*}
$$

and hence nor L_{0} / L_{0} is not a Lie algebra. To obtain a consistent homomorphism, we must enlarge the kernel to include

$$
\begin{equation*}
\mathrm{L}_{0}^{\prime}=\left\{A_{12}, B_{12}, B_{11}\right\} \tag{59}
\end{equation*}
$$

We then have

$$
\begin{align*}
& \operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0}^{\prime}=\operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0} \\
& \mathrm{~L}_{1} \sim \operatorname{nor}_{\mathrm{L}} \mathrm{~L}_{0}^{\prime} / \mathrm{L}_{0}^{\prime} \sim\left\{A_{11} \oplus\left(A_{22}, B_{22}, C_{22}\right)\right\} \sim \mathrm{o}(1,1) \oplus \mathrm{sl}(2, R) \tag{60}
\end{align*}
$$

and L_{1} is the algebra represented faithfully.
The motivation, stressed in this article, for introducing Lie algebras under constraints comes from the study of non-bijective canonical transformations. In this respect, the mathematical results obtained here are of interest in the determination of invariance and non-invariance algebras of dynamical systems (cf Kibler and Négadi 1983a, b, 1984a, Lambert and Kibler 1988). They may also be useful in related fields as in atomic and nuclear shell theory (cf Quesne 1986) and in such nuclear models as the interacting vector boson model (cf Georgieva et al 1986).

A different application that suggests itself concerns symmetry reduction for partial differential equations. Thus, let L be the Lie algebra of the Lie group G of local point symmetries of a system of partial differential equations (see Olver 1986) and let L_{0} be a subalgebra of L corresponding to a subgroup G_{0} of G. The construction of solutions invariant under the subgroup G_{0} involves a non-bijective transformation from the space of independent and dependent variables $\left\{x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{N}\right\}$ to the space of G_{0} invariants $\left\{\xi_{1}, \ldots, \xi_{k}, w_{1}, \ldots, w_{N}\right\}(k<n)$. The transformation involves precisely the conditions

$$
\begin{equation*}
X \Phi\left(x_{1}, \ldots, x_{n}, u_{1}, \ldots, u_{N}\right)=0 \quad X \in \mathrm{~L}_{0} \tag{61}
\end{equation*}
$$

Hence, the Lie algebra under constraints L_{1} is in this case the Lie algebra of a group G_{1} leaving invariant the space \hat{M} of invariants of L_{0}. Either G_{1} or a subgroup of G_{1} will then be the symmetry group of the reduced equations.

Acknowledgments

One of the authors (PW) thanks the Institut de Physique Nucleaire de Lyon for its hospitality during the work on this project. His research is partially supported by NSERC of Canada and the Fonds FCAR du Gouvernement du Québec. The other author (MK) acknowledges the Centre de Recherches Mathématiques de l'Université de Montréal for the hospitality extended to him during the writing of this paper.

References

Barut A O, Schneider C K E and Wilson R 1979 J. Math. Phys. 202244
Blanchard Ph and Sirugue M 1981 J. Math. Phys. 221372
Boiteux M 1972 C. R. Acad. Sci., Paris B 274867

- 1982 J. Math. Phys. 231311

Burdet G, Patera J, Perrin M and Winternitz P 1978 J. Math. Phys, 191758
Cornish F H J 1984 J. Phys. A: Math. Gen. 172191
Dirac PA M 1964 Lectures on Quantum Mechanics (New York: Belfer Graduate School of Science, Yeshiva University)
Duru I H and Kleinert H 1979 Phys. Lett. 84B 185
Georgieva A I, Ivanov M I, Raychev P P and Roussev R P 1986 Int. J. Theor. Phys. 251253
Gracia-Bondía J M 1984 Phys. Rev. A 30691
Hurwitz A 1898 Nachrichten der Gesellschaft der Wissenschaften zu Göttingen p 309

Ikeda M and Miyachi Y 1970 Math. Japan. 15127
Iwai T 1985 J. Math. Phys. 26885
Iwai T and Rew S-G 1985 Phys. Lett. 112A 6
Jacobson N 1979 Lie Algebras (New York: Dover)
Kibler M and Négadi T 1983a Lett. Nuovo Cimento 37225
-_ 1983b J. Phys. A: Math. Gen. 164265

- 1984a Phys. Rev. A 292891
_ 1984b Croatica Chem. Acta 571509
-1987 Phys. Lett. 124A 42
Kibler M and Winternitz P 1987 J. Phys. A: Math. Gen. 204097
Kustaanheimo P and Stiefel E 1965 J. Reine Angew. Math. 218204
Lambert D and Kibler M 1987 Proc. 15th Int. Colloq. on Group Theoretical Methods in Physics, 1986 ed R Gilmore (Singapore: World Scientific) p 475
_- 1988 J. Phys. A: Math. Gen. 21307
Lambert D, Kibler M and Ronveaux A 1986 Proc. 14th Int. Colloq. on Group Theoretical Methods in Physics, 1985 ed Y M Cho (Singapore: World Scientific) p 304
Levi-Civita T 1956 Opere Matematiche (Bologna) vol 2
Mello P A and Moshinsky M 1975 J. Math. Phys. 162017
Moshinsky M and Seligman T H 1978 Ann. Phys., NY 114243
- 1979 Ann. Phys., NY 120402

Moshinsky M and Winternitz P 1980 J. Math. Phys. 211667
Olver P 1986 Applications of Lie Groups to Differential Equations (Berlin: Springer)
Patera J, Sharp R T, Winternitz P and Zassenhaus H 1977 J. Math. Phys. 182259
Polubarinov I V 1984 Preprint Joint Institute for Nuclear Research, Dubna E2-84-607
Quesne C 1986 J. Phys. A: Math. Gen. 192689
Shaw R 1988 J. Phys. A: Math. Gen. 217
Vivarelli M D 1983 Celes. Mech. 2945
Young A and DeWitt-Morette C 1986 Ann. Phys., NY 169140
Zassenhaus H 1952 Comment. Math. Helv. 26252

[^0]: † Permanent and present address: Institut de Physique Nucléaire (et IN2P3), Université Claude Bernard Lyon-1, 43 Bd du 11 Novembre 1918, 69622 Villeurbanne Cedex, France.

