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Lie algebras under constraints and non-bijective canonical 
transformations 

Maurice Kiblert and Pave1 Winternitz 
Centre de Recherches Mathtmatiques, Universite de Montreal, C P  6128-A, Montreal, 
Quebec H3C 357, Canada 

Received 26 October 1987 

Abstract. The concept of a Lie algebra under constraints is developed in connection with 
the theory of non-bijective canonical transformations. A finite-dimensional vector space 
M ,  carrying a faithful linear representation of a Lie algebra L, is mapped into a lower- 
dimensional space fi in such a manner that a subalgebra Lo of L is mapped into D( Lo) = 0. 
The Lie algebra L under the constraint D(Lo) = 0 is the largest subalgebra L, of L that can 
be represented faithfully on M. If Lo is semisimple, then L, is shown to be the centraliser 
cent,L,. If L is semisimple and Lo is a one-dimensional diagonal subalgebra of a Cartan 
subalgebra of L, then L, is shown to be the factor algebra cent,L,/L,. The latter two 
results are applied to non-bijective canonical transformations generalising the Kustaan- 
heimo-Stiefel transformation. 

1. Introduction 

In the recent years, the LC transformation (Levi-Civita 1956), an R 2 +  R 2  map with 
discrete kernel, and the KS transformation (Kustaanheimo and Stiefel 1965), an R4 + R 3  
map with continuous kernel, have been investigated and used in various domains of 
theoretical physics. The LC transformation is closely related to the usual conformal 
map and is therefore connected to the algebra of ordinary complex numbers. The KS 

transformation may be considered as a byproduct of the theory of spinors and thus 
turns out to be connected to the algebra of ordinary quaternions (Kustaanheimo and 
Stiefel 1965, Blanchard and Sirugue 1981, Vivarelli 1983, Cornish 1984, Kibler and 
NCgadi 1984b). The LC and KS transformations have been employed in classical and 
quantum mechanics and the reader is referred to the paper by Lambert and Kibler 
(1988) for an extensive bibliography. Let us just mention that the KS transformation 
is of interest in the study of dynamical systems either in a partial-diff erential-equation 
approach (Ikeda and Miyachi 1970, Boiteux 1972, Barut et a1 1979, Kibler and NCgadi 
1984b) or in a path-integral approach (Duru and Kleinert 1979, Blanchard and Sirugue 
1981, Young and DeWitt-Morette 1986) or in a phase-space approach (Gracia-Bondia 
1984). In this direction, the KS transformation has been very recently applied to a 
quantum mechanical investigation of the Hartmann potential (Kibler and Winternitz 
1987) and of a Aharonov-Bohm-like potential (Kibler and NCgadi 1987). 

There exist several non-bijective quadratic transformations generalising the LC and 
KS transformations. In particular, Kibler and NCgadi (1984b) (see also Lambert and 
Kibler 1988) have studied a compact R4+ R4 transformation and a compact R 2 +  R +  
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transformation that parallel the LC and KS transformations, respectively. Furthermore, 
Iwai (1985) and Iwai and  Rew (1985) have defined and  used in symmetry reduction 
problems an  R 4 + R 3  transformation which may be thought of as a non-compact 
extension of the KS transformation. General attempts to introduce non-bijective quad- 
ratic transformations have been achieved by Boiteux (1982), Polubarinov (1984) and  
Lambert eta1 (1986). Finally, Lambert and Kibler (1987,1988) have recently introduced 
and  studied from both an  algebraic and geometric viewpoint both ( i )  compact and  
non-compact R2" + R" transformations with 2m = 2 , 4 , 8 , .  . . extending the LC trans- 
formation and  referred to as quasi-Hurwitz transformations and ( i i )  compact and  
non-compact R2" + R 2 m - n  transformations with (2m, 2 m  - n )  = (2, 1), (4, l ) ,  (4,3),  
(8, 1) and (8,5) extending the KS transformation and referred to as Hurwitz transforma- 
tions. Such a study is based on the use of anti-involutions of Cayley-Dickson algebras, 
the latter algebras being generalisations of the algebras of complex numbers, quater- 
nions and  octonions. 

It is the aim of this paper to develop a group theoretical approach to the Hurwitz 
transformations R2" + R2"-", with (2m, 2m - n )  = (2, l ) ,  (4 ,3)  and ( 8 , 5 ) ,  which com- 
prise and extend the KS transformation. The whole philosophy of this approach may 
be summed up  as follows. In view of the non-bijectivity of the R Z m  -$ R 2 m - n  map, we 
may introduce, for 2m fixed, n = m - 1 + 6(  m, 1) 1 -forms which are not total differentials 
and equate them to zero. We can then associate a vector field to each of the n 1 -forms 
arising in the R2" + R 2 m - n  transformation. For 2m fixed, each of the vector fields X ,  
with i = 1,2 ,  . . . , n is defined in the real symplectic Lie algebra sp(4m, R )  and the n 
vector fields together span a subalgebra Lo of sp(4m, R ) .  Indeed, the algebra Lo may 
be considered as a specific realisation of the Lie algebra of the ambiguity group 
discussed by Mello and  Moshinsky (1975) and Moshinsky and  Seligman (1978,1979) 
in connection with general R P  + R P  (non-bijective) transformations with p < p ' .  The 
algebra Lo will be called a constraint Lie algebra since its n generators X ,  satisfy XI+ = 0 
for any function $ of class C ( R Z m - " ) .  ( In  this vein, it is to be noted that the constraints 
X ,  = 0 ( i  = 1 , 2 , .  . . , n )  written in the phase space R Z m  x R2" are nothing but primary 
constraints of the generalised Hamiltonian formalism developed by Dirac (1964).) At 
this stage, one may ask the question: what is the group theoretical significance of the 
constraint conditions (also called superselection rules by Boiteux (1982)) X,$ = 0, 
i = 1 , 2 , .  . . , n? In other words, what is the subalgebra of sp(4m, R )  which survives 
when one forces the generators of L 0 c  sp(4m, R )  to vanish? These questions lead to 
studying Lie algebras under constraints and this is done in the present paper by 
introducing various constraints in sp(4m, R )  for 2m = 2, 4 and 8. 

This article constitutes a non-trivial extension of a series of papers by Kibler and 
NCgadi (1983a, b, 1984a). In the latter works a unique constraint X = 0, corresponding 
to a constraint Lie algebra Lo of type so(2) for the KS transformation, is introduced 
into sp(8, R ) .  This leads to a Lie algebra under constraints isomorphic to so(4,2). As 
a physical application, the non-invariance dynamical algebra S0(4,2) of the R 3  hydro- 
gen atom may be obtained from the non-invariance dynamical algebra sp(8, R )  of the 
R 4  isotropic harmonic oscillator. This important result is a group theoretical comple- 
ment of the well known result that the K S  transformation allows us to convert, in a 
Schrodinger, Feynman or  Weyl-Wigner-Mqyal formulation, the R 3  hydrogen atom 
problem into the R 4  isotropic harmonic oscillator problem. The sp(8, R)-S0(4,2) 
connection has been further worked out ( i)  by Quesne (1986) in relation to the 
independent-electron dynamical group of intrashell many-electron states as well as 
with the correlated electron dynamical group of intrashell doubly excited states and  



Lie algebras under constraints 1789 

(ii) by Georgieva et a1 (1986) in relation to boson representations of symplectic algebras 
and their application to the theory of nuclear structure. 

The Hurwitz transformations generalising the KS transformation are described in 
§ 2 in a unified and original way. Although the material contained in § 2 turns out to 
be a byproduct of the work by Lambert and Kibler (1987,1988), the adopted presenta- 
tion is self-consistent and constitutes an alternative to the derivation of the Hurwitz 
transformations. Some general results on Lie algebras under constraints are presented 
as theorems in § 3, where they are also applied to the Hurwitz transformations of § 2. 
Constraint subalgebras Lo of symplectic Lie algebras L are investigated in § 4 for cases 
where Lo and L are more general than for the cases corresponding to the Hurwitz 
transformations of § 2. The final § 5 is devoted to some concluding remarks. 

2. Humitz transformations 

We start from the (generalised) Hurwitz matrix 

A(u)  = 

- c I c 2 u 3  

-c2u2 

C I U I  

- U0 

cl c2u7 

c2u6 

-clus 
- U4 

-cIc3u5 

- c3 U4 

-c1c3u7 

-c3u6 

Cl U1 

- U0 

c l  u3 

U2  

-c2c3u6 

c2 c3 u7 

- c3 U4 

c3 us 

c2 U2 

-c2u3 

- U0 

- U1 

c l  c2 c3 u 7  

-c2c3u6 

c l c3u5  

- c3 U 4  

- c I c 2 u 3  

c2 U 2  

-cIuI 
- U0 

in dimension 2m = 8, where U,( a = 0, 1 , .  . . , 7 )  are real numbers and ck = *l ( k  = 
1 , 2 , 3 ) .  We also consider the column vector U, the metric matrix 7 and the conjugation 
matrix E defined by (the sign - indicating matrix transposition): 

i = ( - u O , u I , u 2 1  u 3 , u 4 3 u 5 , u 6 , u 7 )  

7 =diag(L -c l ,  -c2, cIc2,  -c3, C I C 3 r  c2c3,-cIc2c3) (2)  

Let us finally introduce the matrices A(u) ,  U, 7 and E in dimensions 2 m  = 4 and 2 in 
the following manner: A(u),  7 and E are the 2m x 2 m  matrices consisting of the first 
2m rows and columns of the corresponding matrices defined by equations (1) and (2), 
whereas U is the column vector consisting of the first 2m rows of the corresponding 
column vector defined by equation (2). 

It can be verified that the matrices A(u )  for 2m = 2, 4 and 8 satisfy the properties 

& = d i a g ( l , - l , l , l , l ,  1,-1,-1). 

& 4 7 A ( u )  = ( i 7 U ) r l  A ( u )  = T J [ - A ( u ) - ~ u ~ I ~ ~ I V  (3) 
where Izm stands for the 2m x 2m unit matrix. The matrices A ( u )  are of central 
importance in the celebrated Hurwitz (1898) theorem of arithmetics and its non- 
compact extension (Lambert and Kibler 1988). (The compact cases treated by Hurwitz 
correspond to cl = c2 = c3 = -1, cl = c2 = -1 and cI = -1 for 2m = 8, 4 and 2, respec- 
tively.) The matrices A( U )  in dimensions 2m = 2, 4 and 8 are related to the Cayley- 
Dickson algebras A(c,), A(c, ,  c2)  and A(c, ,  c2, c3) of dimensions 2m = 2 , 4  and 8 and 
they may be written in terms of elements of Clifford algebras of degrees 2m - 1 = 1, 3 
and 7, respectively (Lambert and Kibler 1988). In this respect, in the compact case 
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cI = c2 = c, = -1 for 2m = 8, the Clifford algebra of degree 2m - 1 = 7 has been recently 
considered by Shaw (1988) in connection with a new view of the d = 7 Dirac algebra. 

We are now in a position to define non-bijective quadratic transformations. We 
shall deal in turn with the cases 2 m  = 8, 4 and 2. 

2.1. The case 2m = 8  

Let us define the R8+ R5  map through 

x = A( U )  EU. 

In detail, we have 
(4) 

(In the general algebraic framework developed by Lambert and Kibler (1988), the 
R 8 + R 5  map given by ( 5 )  corresponds to the right Hurwitz transformation X"' 
associated to the anti-involution j7 of A(c, ,  c2, c3).) Equation (5) may equally well be 
seen to result from the integration of 2A( U ) E  du. Indeed, the column vector 2A( U ) &  du 
is the transpose of the row vector (dx,, wl ,  dx,, dx,, dx,, dx5, w6, w7), where the 
1-forms 

= 2( -U, duo + uodu, + czu3du2 - c Z U ~ ~ U ~  + C3 ~ 5 d ~ 4  - C3 u4du5 - CZC) U,dU6 + C,C,U6dl47) 

~6 = 2( -U,dUo - C l  U7dUl- ~ q d ~ 2  - C1 ~ 5 d ~ 3  + u2d U 4  + C1 u3du5 + UodU6 + Cl uld U7) 

~7 = 2( - u7duO - U6dU1- uf;du2 - u,du3 + u,du, + u2du5 + UldU6 + ~0du.i)  
( 6 )  

which are not total differentials, can be taken to be equal to zero in view of the 
non-bijectivity of the R8+ R5 map. The constraints w1 = w6 = w ,  = 0 make it possible 
to obtain 

dxi-  c2 dx: + cIc2 dx: - c3 dx: + cIc3 dx: = 4r(du' 7 du)  (7) 
where the 'distance' r = U' 7 U satisfies 

r2 = x i  - c2x: + c, c2x: - c3x: + c, c3x:. 

The basic property to be used in 0 3 is 

= ( 1 / 2 r ) g A ( u ) q  (9) 

where the vector fields X I ,  x6 and X7 associated to the 1-forms U , ,  w6 and w 7 ,  
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respectively, are 

XI = c,u,a/au,+ u,a/au,+c,u,d/au,+ u,a/au,+ ~ ,u , a / au ,+  u,a/au, 

x6 = - c , c , u ~ ~ / ~ u , +  c , c , u , ~ / ~ u ,  + c3u4a/au2 - c , u ~ ~ / ~ u ,  - c2u2a/au, 

x, = c , c , c , u ~ ~ / ~ u , -  c ~ c , u , ~ / ~ u ,  - c , c , u , ~ / ~ u , +  c,u,a/au,+ c , c , u , ~ / ~ u ,  

+ c,u,a/au6+ u6alau, 

+ c 2 ~ , a / a u 5  + uoa/au, - u,a/au, (10) 

- c,u,a/au, - c,u,a/au6+ uoa/au,. 
The operators X I ,  x6 and x7 vanish when acting on functions $(xo, x2 ,  x,, x4, x5) of 
class C'( R 5 )  and satisfy the commutation relations 

[x,, x6i = - 2 x ,  
L X 6 9  x71 = -2c2c3x1 (11) 
[ x ? ,  x ,1=2clx6 .  

They therefore generate the Lie algebra su(2) or s u ( 1 , l )  according to whether 
( ~ ~ , c ~ , ~ ~ ) = ( - l , * l , * l )  or ( c l , c 2 , c 3 ) # ( - l , * l , * l ) .  Note that inview of(10),  XI ,  
x6 and X, are defined in the Lie algebra sp(16, R ) .  

Following the geometrical analysis developed by Lambert and Kibler (1988), and 
adapting it to the anti-involution j ,  inherent to the present work, the Hurwitz transfor- 
mations characterised by equations (1)-( 11) may be classified (up to homeomorphisms) 
into three types. 

Type (c'). For ( c l ,  c2, c3) = (-1, -1, - l ) ,  the map R8+ R S  corresponds to the well 
known Hopf fibration on spheres S7 + S4 of compact fibre S3. 

Type (c"). For ( c , ,  c2,  c3)=(-1 ,  1, l ) ,  the map R8+ R + x  R 4 c  R 5  corresponds to 
a fibration on hyperboloids, namely R" x S3 + R" of compact fibre S3. 

Type (nc). For ( c l ,  c2, c3) # (-1, i l ,  * l ) ,  the map R8+ R 5  corresponds to another 
fibration on hyperboloids, namely R4 x S3 + R 2  x S 2  of non-compact fibre R 2  x SI. 

We shall see in 0 3 that there are two types of Lie algebras under constraints that 
we can associate to the latter three types of Hurwitz transformations. 

2.2. The case 2m = 4  

This case is especially simple to present since it can be obtained from the case 2m = 8 
by omitting everything involving c3, ( u4, u5, u6, U,), ( x4, x5), (w6, w 7 )  and (X,, X,). 
This yields the R4+ R3 map defined by 

xo = U; - Cl U: + c,u: - c, c2u: 

x ,=2( -u0u~+c lu1u3)  
x3=2(-uou3+ulu2) 

and subjected to the constraint 

W I  =2(-uIduo+ U ~ ~ U , + C ~ U , ~ U , - C , U ~ ~ U ~ ) = ~ .  (13) 

XI = c,u,a/auo+ uoa/aul + cIu3a/au2+ u,a/au, (14) 

In this case there is only one vector field, namely 

which belongs to the Lie algebra sp(8, R )  with the property that X,+(xo, x2, x3) = 0 
for + in C ' ( R 3 ) .  The operator XI generates the subalgebra so(2) for ( c , ,  c2) = (-1, *l )  
and so( 1, 1) for ( c , ,  c,) = (1, *l). 
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We thus get a transformation which coincides with the right Hurwitz transformation 
Xg’ associated to the anti-involution j ,  of A( c , ,  c 2 ) ,  see Lambert and Kibler (1988). 
The special situation where c, = c2 = -1 leads to the transformation worked out by 
Kustaanheimo and Stiefel ( 1965). The transformation recently introduced by Iwai 
(1985) is obtained by taking c, = -c2 = -1 .  

Here again, we have three types of Hurwitz transformations which will give two 
types of Lie algebras under constraints. We extract from the work of Lambert and 
Kibler ( 1988) the following classification that may be readily understood us a restriction 
of the corresponding one for 2m = 8. 

Type (c’). For ( c , ,  c 2 )  = (-1, - l ) ,  the map R 4 +  R 3  corresponds to the famous Hopf 
fibration on spheres S 3 +  S 2  of compact fibre SI. 

Type (c”). For ( c l ,  c2 )=( -1 ,  l ) ,  the map R 4 + R + x  R 2 c  R3 corresponds to a 
fibration on hyperboloids, namely R 2  x SI + R 2  of compact fibre S’. 

Type (nc). For ( c l ,  c2) = ( 1 ,  - 1 )  or (1, l ) ,  the map R 4 +  R 3  corresponds to another 
fibration on hyperboloids, namely R’x SI + R x SI of non-compact fibre R. 

2.3. The case 2m =2 

This limiting case presents some specific features, with respect to the cases 2m = 4 and 
8, as can be seen in terms of Laplacian and d’Alembertian operators. Nevertheless, 
those points of relevance for what follows may be deduced from the case 2 m  = 4 by 
simply suppressing the expressions with c2,  ( u z ,  u3)  and (x2, x3). We are thus left with 
the R’+ R map 

xo= u ; - c , u :  (15)  

accompanied by the constraint 

W I  = 2 ( - ~ ,  duo+ U O  dui) =O. (16) 
The corresponding vector field 

XI = c,u,a/auo+ uoa/au, (17) 

is defined in the Lie algebra sp(4, R )  -so(3,2) and satisfies X l i J ( x o )  = 0 for in C ’ ( R ) .  
The operator XI generates the subalgebra so(2) for c, = -1 and so(1, 1) for c, = 1. 
Equations ( 15)-( 17) correspond to the right Hurwitz transformation 9li.k“ associated 
to the anti-involution j ,  = j o  of A ( c , )  (cf Lambert and Kibler 1988). 

It is obvious in this case that there are only two distinct Hurwitz transformations, 
which will produce two types of Lie algebras under constraints in 9 3 .  Indeed, we 
have the following classification. 

Type (c). For c, = - 1 ,  the map R’+ R f c  R corresponds to the fibration S1+{l} 
of compact fibre SI. 

Type (nc). For c, = 1, the map R 2 +  R corresponds to the fibration R + (1) of 
non-compact fibre R. 

3. Lie algebras under constraints 

The study of non-bijective canonical transformations has led us to a mathematical 
problem that is of independent interest and has a wider realm of applications. It can 
be formulated as follows. 
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Consider a finite-dimensional Lie algebra L and  one of its proper subalgebras Lo. 
Let L have a faithful finite-dimensional representation on some linear space M. 
Consider a non-bijective mapping from M to some lower-dimensional space fi such 
that on fi the subalgebra Lo is represented trivially by 

(18)  

The questions that we pose are as follows. 
(1) Is there a uniquely defined largest subalgebra i of L such that L o c  i r  L 

and having a non-faithful linear representation D :  L +  D ( i )  on fi with Lo as its kernel, 
i.e. satisfying equation (18)? 

(2) If i exists, how one does find it and  which is the largest subalgebra LI  of i 
that is represented faithfully in the representation D ( i ) ?  

We start with some general Lie algebraic considerations and  answer the above 
questions under some restrictions on Lo and  L. We then specialise to the case of 
interest in the context of the Hurwitz transformations of § 2, where we have L = 
sp(4m, R )  with 2m = 2, 4 and 8, Lo = { X , }  for 2m = 2 or  4 and  Lo = { X , ,  X , ,  X , }  for 
2m = 8. 

As far as terminology is concerned, we call Lo a ‘constraint Lie algebra’ (the 
constraint being (18)) and L1 a ‘Lie algebra under constraints’ (the constraints being 
brought by (18)). 

D : Lo+ D( Lo) = 0. 

3.1. General discussion 

Let us first introduce some concepts that we shall need below. Here L stands for an  
arbitrary Lie algebra, the Lie brackets [ ,  3 of which identify with commutators in a 
given linear representation. 

Definition 1. The normaliser of a Lie algebra Lo in a Lie algebra L, with L 0 c  L, is 
defined as 

nor,Lo = {Z E LI [Z, Lo] E Lo}. (19)  
Thus, norL Lo is the largest subalgebra of L in which Lo is an  ideal. Given L and  Lo, 
norL Lo is uniquely determined. 

Definition 2. The centraliser of a Lie algebra Lo in a Lie algebra L, with L 0 c  L, is 
defined as 

cent,L,={ZEL/[Z, L,,]=O}. (20)  
Clearly, the subalgebra cent, Lo of L is uniquely determined once L and  Lo are given. 

Directly from the definitions we see that we have 

Lo G nor, Lo nor, L o s  L cent, Lo c nor, Lo. (21) 
Let us now turn to the problem at hand. The algebra Lo is the kernel of the Lie 

algebra homomorphism D : i + D( i). Then, the Lie brackets 

are compatible with those of i only if we have 

[ i, L”] E Lo * (23) 
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Hence, Lo must be an  ideal in i and consequently we must have - 
L E  norL Lo. (24) 

Let us now introduce a basis { X i ;  1 s i s  n }  for the Lie algebra Lo (of dimension n )  
and complement it to a basis { X , ,  Y,; 1 s is n, 1 s a c v} for the Lie algebra norL Lo 
(of dimension n + v). The Lie brackets for norL Lo in this basis are 

[ ya, Ypl = c:p y, + d h p X .  (25c)  

If the basis { Ye; 1 C a s v} of the factor ‘algebra’ F = norLLo/Lo can be so chosen 
that d i p  = 0 (1 s a, p s v, 1s i s n ) ,  then the factor algebra F is itself a Lie algebra. 
Moreover, in this case we have 

L , = F = { Y , ;  l s a s v }  (26)  

i.e. the factor algebra F, that can be characterised as the external normaliser of Lo in 
L, is itself the Lie algebra L, that is represented faithfully in D ( i )  with i= norL Lo. 

Relation (25b) provides an  outer derivation of the Lie algebra Lo unless all structure 
constants vanish. To proceed further we restrict ourselves to constraint algebras 
Lo that d o  not have any outer derivation. According to a theorem proven by Zassenhaus 
(1952) (see also Jacobson 1979) this will be the case if Lo is a finite-dimensional 
semisimple Lie algebra over a field of characteristic zero. On the other hand, in the 
case where Lo is Abelian, a given element X ,  of Lo will either commute with all basis 
elements Y, or  will be represented by a nilpotent matrix in the adjoint representation 
of i. We thus arrive at the following results. 

Lemma 1. Let the constraint Lie algebra Lo be a semisimple Lie algebra over a field 
of characteristic zero. Then, the structure constants in (25b) satisfy 

b{= = 0 l s i , j C n ;  1 ~ a ~ v  (27) 

norL Lo = Lo(+)centL Lo (28)  

where (+) denotes the direct sum of vector spaces. 

and we have 

RooJ Equation (27) follows from the fact that a semisimple Lie algebra has no outer 
derivation. The result (28) is a consequence of (27)  and the fact that a semisimple Lie 
algebra does not have a centre, hence the condition [ X ,  Lo] = 0 implies that X does 
not belong to Lo. 

Lemma 2. Let Lo be a subalgebra of a Cartan subalgebra of a finite-dimensional 
semisimple Lie algebra L over a field of characteristic zero. Then, the structure constants 
in (256)  satisfy 

WO = O  l s i , j s n ;  l s a c v  (29) 
and we have 

norL Lo=centL Lo. (30) 
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Proof: A Cartan subalgebra of a semisimple Lie algebra L consists entirely of elements 
that are represented by simultaneously diagonalisable matrices in the adjoint rep- 
resentation of L, at least after a field extension. A set of such matrices does not contain 
any nilpotent matrix. The algebra Lo has no outer derivation so that = 0 in (25b). 
Since Lo is Abelian, we have a: = 0 in (25a) and the result (30) follows. 

We now turn to our main results on Lie algebras under constraints. 

Theorem 1 .  Let L be a finite-dimensional Lie algebra over a field of characteristic zero 
and  let Lo be a semisimple proper subalgebra of L. The largest subalgebra i of L that 
has a linear representation D ( i )  with Lo as its kernel is the normaliser 

i = n o r , ~ ~ = ~ ~ ~ c e n t , ~ ~ .  ( 3 1 ~ )  

The largest subalgebra L, of i that can be represented faithfully in D ( i )  is the centraliser 

LI  =cent ,Lo=nor ,Lo/Lo.  (31b) 

Proof: From lemma 1 we already know that nor, Lo is the direct sum of the two disjoint 
vector spaces Lo and cent, Lo and that we have bJ, = 0 in (25b). Since cent, Lo is a 
Lie algebra and X, (1 zs i S n )  does not belong to cent, Lo, we must have d &  = 0 in 
(25c) and we obtain (30). Thus, i = nor, Lo is a direct sum of Lie algebras and setting 
D( Lo) = 0 is consistent with representing L, = cent, Lo faithfully. 

Theorem 2. Let L be a classical Lie algebra over the field R having a n  even-dimensional 
self-representation, i.e. a real form of AZN-3, CN or DN ( N  = 2,3,  . . .) in Cartan’s 
notations. Let Lo be a one-dimensional subalgebra of a Cartan subalgebra of L, namely 
one o f the  ‘diagonal subalgebras’ [0(2)@0(2)@. . .@0(2)]d or [ o ( l ,  l ) @ o ( l ,  l ) @ . .  .@ 
o(1, l)]d. Then, the largest subalgebra i of L that has a non-faithful representation 
D ( i )  with Lo as its kernel is uniquely determined to be - 

L = nor, Lo = cent, Lo. (32a) 
The largest subalgebra L, of i that can be represented faithfully in D ( i )  is the factor 
algebra 

L, =cent, Lo/Lo (326) 
which in this case is itself a Lie algebra. 

Proof: From lemma 2 we already have nor, Lo = cent, Lo. We must show that under 
the conditions of the theorem we have 

cent, Lo = L O O  L, . (33) 

[XI, y , 1 = 0  [ Ye, Ypl= cbp Y, + d b p x , .  (34) 

By hypothesis we have n = 1 and  therefore the Lie brackets (25a, b, c) reduce to 

Equations (34) describe a central extension of the Lie algebra { Y,;  1 s a zs v} and we 
must show that this extension is trivial, i.e. dhp = 0 ( 1  s a, p s v). 

Consider first the non-compact case L,=[o(l ,  l ) @ o ( l ,  1)O.. .@o(l ,  1 ) ] d .  We can 
choose a realisation of the defining faithful linear representation of L in which Lo is 
represented by the matrices 

X = a diag[ZN, -IN] a E R. (35a) 
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A simple calculation shows that in this representation we have 

nor, Lo = cent, LO = {diag[A, B]; A, B E R N x  N} (35b) 

with possibly further restrictions on the matrices A and B depending on which particular 
classical Lie algebra L we are considering. In any case, independently of the choice 
of L, the derived algebra [cent, Lo, cent, Lo] of cent, Lo is represented by matrices of 
the form diag[A, B ]  with Tr A = Tr B = 0. Hence, Lo$ [cent, Lo, cent, Lo] and we 
obtain dbp = 0 in (34) so that (33) holds. 

Now consider the compact case Lo= [ 0 ( 2 ) 0 0 ( 2 ) 0 . .  .00(2)] , , .  In an appropriate 
realisation of the definining representation of L we have Lo represented by the matrices 

X = b diag[J, J, . . . , 

where the matrix J occurs N times along the diagonal of X .  We obtain 

nor, Lo = cent, LO = [ [ XI' . : : x , N  1; x,, = [ blJ]; at,, b ,  E R ;  1 i , j C  N 
-bIJ  

X N ,  . . . X" 

(36b) 

for the normaliser (and centraliser) of Lo in A = R Z N x Z N  . Since (36b) provides a real 
representation of gl( N, C), we have nor,Lo = gl( N, C). The normaliser of Lo in L will 
be a subalgebra of gl( N, C), obtained by imposing the appropriate involution condition, 
reducing A to L. In any case, Lo is not contained in the derived algebra sl(N, C)  of 
gl(N, C)  and still less in that of any subalgebra of gl(N, C). We again conclude that 
dbp = 0 in (34) so that we obtain (33). 

Finding the maximal subalgebra L1 of L that is represented faithfully when Lo is 
represented trivially is thus a simple task of linear algebra and boils down, in the cases 
of relevance in 9 3.2, to constructing the set of elements commuting elementwise with 
the elements of Lo. The Lie algebra L1 coincides with what Kibler and NCgadi 
(1983a, b, 1984a) refer to as a Lie algebra under constraints. In their terminology, L1 
is isomorphic to the algebra L subjected to the constraints 

xi = 0 I S i c n  (37) 
and may thus be thought of as the Lie algebra surviving when the constraints (37) are 
introduced inside L. 

3.2. Application to Hurwitz transformations 

Returning to the non-bijective quadratic transformations described in 9 2, we identify 
L as sp(4m, R )  with 2m = 2, 4 or 8. The basic problem is for L =  sp(16, R )  and 
Lo = so(3) - su(2) or s o ( 2 , l )  - su( 1, 1) and corresponds to 2m = 8. The two remaining 
problems concern L = sp(8, R )  for 2m = 4 and L = sp(4, R )  for 2m = 2 and both corre- 
spond to Lo=so(2) or so(1, 1 ) .  The problems for 2m = 4  and 2 can be solved at the 
same time as the problem for 2m = 8 by adapting the restriction process of 0 2. 

We realise the algebra sp(4m, R )  by matrices X of R4mx4m satisfying 
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so that we have 

(see Moshinsky and Winternitz (1980) for details). The matrix X depends on 2m(4m + 
1) parameters as it must. The Lie algebra sp(4m, R )  is, on the one hand, realised by 
the matrices (39) and, on the other, by the bilinear forms 

u~, = a,u, + u,a, P , ,  = a,a,  Yl] = %U,. (40) 
The representatives of the operators aaJ, PI, and y,, in terms of matrices X may be 
obtained according to a simple prescription (Moshinsky and Winternitz 1980). 

For 2m = 2  and 4, Lo ( =s0(2) or so(1 , l ) )  is spanned by X ,  of (17) and (14), 
respectively. For 2 m  = 8, Lo ( =  so(3) or so(2, 1))  is spanned by the three operators 
X I ,  x6 and X7 of (10). It is easy to represent the constraint operators X,,  x6 and X7 
for sp(16, R )  in terms of matrices X of equation (39) with 2m = 8 by applying the 
above-mentioned prescription. The representative matrix of XI so obtained may serve 
to generate the matrices that represent the constraint operators XI for sp(8, R )  and 
sp(4, R )  by means of a subduction process which parallels the restriction process 
described in 0 2 for the coordinate transformations. 

It is then a simple matter of calculation to find the centraliser of {XI ,  x6, X,} in 
sp( 16, R ) .  It is sufficient to search for the general matrix X which commutes with the 
representative matrices of the operators Xl(cl)  and Xb(c2, c,) corresponding to the 
case 2m = 8. (The representative matrix of the operator X,( c I ,  c 2 ,  c 3 )  does not need 
to be considered since it imposes no further restriction.) This has been done in a brute 
force way by using the algebraic and symbolic programming system REDUCE. As a 
net result, the general representative matrix X(  c, , c 2 ,  c , )  of the centraliser of 
{Xl(cl) ,  X6(C2, c,), X7(c1, c2, c 3 ) }  in sp(16, R )  is given by equation (39) with 

A =  

B =  

and 

a1 1 

‘1012 

‘3 I 

‘1 

‘3037 

-‘I c3a38 

- ‘2 ‘3 a 17 

‘I c2c3al  8 

a 1 2  

a ,  I 

a 3 2  

a31 

-‘3a38 

c3a37 

C2C3a I a 

-c2c3a17 

a13 

‘ la14 

a 3 3  

‘ la34 

-c2c3a35 

‘1 ‘2‘la36 

c 3 a l S  

-‘I ‘3’ I 6  

a14 

a13 

a 3 4  

a 3 3  

c2c3a36 

- ‘2‘3 a35 

-‘3‘16 

c3a15 

bl4 

-‘I b13 

0 

-‘Ib,, 

0 
0 

-‘2’l6 

-‘l‘zbl5 

b I S  

-b16 

0 
0 

‘2‘3’33 

0 

-C3b13 

- c 3 b 1 4  

0 1 5  

‘la16 

(73s 

‘I ‘36 

a 3 3  

- ‘ Ia34 

-‘2’13 

c l c 2 a 1 4  

a16 

0 1 s  

‘36 

a 3 5  

- 0 3 4  

a 3 3  

c2a14 

-c2a13 

C =the same as B with b,, + c , ~ .  

bl, 

-‘1b,5 

0 
0 
0 

-‘I ‘2 ‘3 b33 

‘3‘14 

CIC3b13 

a17 

‘la18 

a 3 7  

‘I ‘38 

-‘2‘31 

c Ic2a32  

a ,  I 

- ‘ l a 1 2  

0 
0 

c 2 h s  
-‘zbI6 

-C3b13 

C3b14 

c 2 c 3 b l l  

0 

0 1 8  

a17 

a 3 8  

a 3 7  

c2a32 

-c2a31 

- 0 1 2  

a1 1 

0 
0 

c2b16 

- c 1  c 2 4 5  

- c 3 b 1 4  

CIC3b13 

0 

-‘I ‘ 2  ‘3 t I 

From the matrix X(c, , c2, c,) so obtained, we can perform the calculation of the rank 
and dimension of the Lie algebra under constraints L, ,  as well as the dimension of 
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the maximal compact subalgebra of LI in each of the cases L = sp(4m, R )  with 2m = 8, 
4 and 2. This makes it possible to identify L, in the following way. In the case 2m = 2 
or 4, we find that centL {Xl(cl)} is a Lie algebra of dimension 4m2 and rank 2m with 
a maximal compact subalgebra of dimension 2m2 for c1 = -1 and m(2m - 1) for c1 = 1. 
Therefore, in the cases 2m = 2 and 4, we have cent, {X,(c,)} = u(m, m )  or g1(2m, R )  
for c1 = -1 or 1, respectively. Consequently, L, =centL {X,(cl)}/{Xl(c~)} is identified 
as su(m, m )  for cI = -1 and s1(2m, R )  for c1 = 1. In the case 2m =8,  we find that 
cent, {Xl(cl) ,  x6(c2, c3), X7(c1, c 2 ,  c,)} is a Lie algebra of dimension 28, of rank 4 and 
of character (i.e. the number of non-compact generators minus the number of compact 
generators) -4 for (c l ,  c2, c3) = (-1, *l ,  *l)  and +4 for (c1,  c2, c3) # (-1, *l ,  *l). 
Consequently, L, = cent, {XI( cl), x6( c2, c3). X7( c I ,  c 2 ,  c,)} is identified as s0*(8) for 
( c , , ~ ~ , ~ ~ ) = ( - l , * l , f l )  and so(4,4) for ( c l , c2 , c3 )# ( - l , * l , * l ) .  The results for 
2m = 8, 4 and 2 can be summed up and further documented as follows. 

The case 2m = 8, L = sp( 16, R ) :  
(c) L0=so(3) and L1=so*(8)-so(6,2) for (c1,c2,c3)=(-1,-1,-1)  o r ( - l , l , l )  
(nc) Lo = so(2, l )  and L, = s0(4,4) for (c , ,  c2, c3) # (-1, *1, i l ) .  
The case 2m = 4, L = sp(8, R ) :  
(c) Lo=so(2) and L,=su(2 ,2) -~0(4 ,2)  for ( c l , c 2 ) = ( - l , - l )  or ( -1 , l )  
(nc) Lo=so( l , l )  and Ll=s1(4,R)-so(3,3) for (c1 ,c2)=(1 , -1)  or (1 , l ) .  
The case 2m = 2, L = sp(4, R ) :  
(c) Lo=so(2) and L ,=su ( l ,  1)-so(2,1) for c ,= -1  
(nc) Lo = so(1, l )  and L, = sI(2, R )  - so(2, l )  for c1 = 1. 
It is to be mentioned that the result (c) for 2m = 4  agrees with the one derived by 

Kibler and NCgadi (1983a, b, 1984a) in the frame of a study of the hydrogen oscillator 
connection based on a bosonisation of the Pauli equations for the hydrogen atom. 

We note the important result that, in each of the cases (n) and (nc), there is a 
correspondence between the types of Lie algebras under constraints and the types of 
fibres described in § 2. More precisely, the cases (c) correspond to compact fibres and 
the cases (nc) to non-compact fibres. 

4. Symplectic Lie algebras under constraints 

The resuls of § 3.2 can be generalised to arbitrary symplectic Lie algebras L and various 
constraint Lie algebras Lo. Indeed, the results obtained in § 3.2 may be derived in an 
alternative and more rational manner that points to further generalisations. 

We shall first deal with two cases where Lo is a one-dimensional constraint algebra 
and shall thus apply theorem 2. We shall then turn to two cases where Lo is a simple 
Lie algebra and shall thus apply theorem 1. 

4.1. The case L,=[o(l ,  l ) @ o ( l , , l ) @ .  . . @ o ( l ,  l)Id and L=sp(2N, R)  

We realise the non-compact diagonal algebra Lo by matrices of the type (39) with 
2m + N and 

A o = a I ,  a E R  Bo= co=o.  
We immediately obtain 

nor, Lo = cent, Lo = {diag[A, -A]} =gl( N, R )  = LoOsl( N, R ) .  (43) 
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Thus, the Lie algebra under constraints is 

L, = sl( N,  R )  c i = g1( N, R ) .  

In particular, we have 

L, = s l (2 ,  R )  - s 0 ( 2 , 1 )  

L, = sl(4, R )  - S 0 ( 3 , 3 )  

for N = 2  

for N = 4  

in agreement with the results of § 3.2 .  

4.2. The case Lo = [ 0 ( 2 ) 0 0 ( 2 ) 0 .  . .O0(2)], and L =sp(4N, R )  

We realise the compact diagonal algebra Lo as in (39)  with m + N and 

Bo= Co=O 

1799 

(44a 1 

(45 )  

where the matrix J occurs N times along the diagonal of Ao. A simple calculation 
yields the centraliser of Lo in L in the form (39)  where the matrix A is an N x N matrix 
of elements 

and where the matrices B and C are given by 

B = A  with a:+ bf: 

C = A  with af: + cf: 
b2 I 1  = c2 I 1  = 0; 1 s i d N. 

We thus obtain 

nor, Lo = cent, Lo = U( N, N )  = LoOsu( N, N )  

and the Lie algebra under constraints is 

L, = su( N, N )  c i = U (  N, N ) .  

In particular, we have 

L , = s u ( l ,  1 ) - s 0 ( 2 , 1 )  

L, = su(2, 2 )  - s0(4,2) 

for N = 1 

for N = 2  

as in § 3.2. 

4.3. The case Lo =[s1(2, R)Osl(2,  R ) O .  . .Os1(2, R)Id and L =sp(8N, R )  

We realise the non-compact diagonal algebra Lo, of dimension three, by the matrices 
(39)  with m + 2 N  and 

A.  = diag[J, J, . . . , J] J=[Z -:] a , b , c E R  Bo=Co=O (49)  
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A =  

where the matrix J occurs 2 N  times along the diagonal of A,.  A straightforward 
calculation yields the centraliser of Lo in L = sp(8N, R )  in the form (39) where the 

a , ,  0 a , ,  0 . .  . a l . Z N  0 
0 a l l  0 a12 . . . 0 a l . , ~  

a,,  0 a,, 0 . . . a 2 , 2 N  0 
0 a, ,  0 a,, . . . 0 

. . .  
a2N.I 0 . . .  a 2 N . 2 ,  0 

- 0 Q2N.1 0 a , , ,  . * . a 2 N , 2 N  

B =  

. o  0 0 b , ,  . . . 0 b l , 2 N  

0 0 -bl2 0 . . .  - b 1 , 2 N  0 
0 - b i z  0 0 . . . 0 b2,2N 

b 1 2  0 0 0 . . . - b 2 , 2 N  0 
. . .  

0 - b 1 , 2 N  0 - b 2 , 2 N  . . . 0 0 
. b 1 , 2 N  b2,2N 0 * ' 0 0 

(50) 
1 

C = B with b,, + cl, 'l,, b l J ,  '11 E R' 
The latter realisation shows that cent, Lo is a simple Lie algebra of dimension 2 N ( 4 N  - 
1) and rank 2 N  with a maximal compact subalgebra of dimension 2 N ( 2 N -  1). We 
can thus identify the centraliser and the Lie algebra under constraints as 

L ,=cen t ,Lo=so(2N,2N) .  (51) 
For N = 2, we recover the result L, = so(4,4) of 0 3.2 corresponding to Lo = so (2 , l )  
and L = sp( 16, R ) .  

4.4. The case L,=[o(3)@0(3)@. . .@0(3)], and L=sp(8N, R )  

We realise the compact diagonal algebra Lo, of dimension three, by the matrices (39) 
with m + 2 N  and 

O a b c  

A.  = diag[J, J, . . . , J ]  J =  [l: ic :a] a , b , c E R  Bo = CO = 0 

- c  -b a 
(52) 

where the matrix J occurs N times along the diagonal of Ao.  The centraliser of Lo in 
L=sp(8N, R )  can be easily calculated. It is realised by matrices of the form (39) 
where A, B and C are N x N matrices in which each entry is a 4 x 4 (real) matrix of 
the type 

x l J =  [-''I -x;, -x;] .P, x : J ]  x t  E R ;  1 d i, j d N; 0 k d 3. 

'f] 
x: ' ? J  

(53) 

-x:] Xf] -x:] x; 
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For X = B and C, we have B,, = g,, and C,, = e,,( 1 s i , j  s N ) .  We find that cent, Lo 
is a simple Lie algebra of dimension 2 N ( 4 N  - 1 )  and rank 2 N  with a maximal compact 
subalgebra of dimension 4N'. We can thus identify cent, Lo as so*(4N) so that we 
end up with 

L, = cent, Lo = so*(4N). (54) 
For N = l ,  we have so*(4)-so(3)@so(2,1).  For N = 2 ,  we recover the result L, = 
s0*(8) - s0(6 ,2)  of 0 3.2 corresponding to Lo = so(3) and L =  sp(16, R ) .  

5. Concluding remarks 

The main mathematical result of this paper can be summarised in the following manner. 
Consider a finite-dimensional Lie algebra L and a proper subalgebra Lo of L. Then, 
the largest Lie algebra L, satisfying L a c  Lc_ L and having a non-faithful linear rep- 
resentation in which Lo is represented trivially, is the normaliser nor, Lo of Lo in L. 
If the normaliser allows a decomposition 

nor, Lo = Lo@ L, (55 )  
into the direct sum of Lo and a Lie algebra L,,  then L1 can be represented faithfully 
in a Lie algebra homomorphism D :  nor, Lo+ D(nor, Lo) with Lo as its kernel. 

The condition that the decomposition (55)  should hold is a restriction on the 
algebras Lo and L. We have shown that equation (55 )  always holds for the constraint 
algebras Lo and the algebras L occurring in the R2" + RZm-"  non-bijective canonical 
transformations with (2m, 2m - n) = (2, l), ( 4 , 3 )  and (8 ,5 ) .  

If the decomposition (55 )  does not hold, then it may be necessary to enlarge the 
kernel of the homomorphism for nor, Lo/Lo to be a Lie algebra. To see this, consider 
the example where L =  sp(4, R )  (realised as in (39) with m = 1) and Lo is the one- 
dimensional nilpotent Lie algebra 

0 0 b , ,  0 
0 0  0 0 

0 0  0 0 
Lo=[[  0 0  0 0 

We find that 

; b , ,E  R . I 
In this case, norL Lo is a Lie algebra isomorphic to the 'optical Lie algebra' opt(2, 1) 
(see Patera et a f  1977, Burdet et a1 1978). Denoting A,, the element of norL Lo obtained 
by setting a ,  = 1 and all other entries equal to zero in equation (57), and similarly for 
B,] and C,,, we have 

[A,*, B , J =  2B, ,  E Lo (58) 
and hence nor, L,/Lo is not a Lie algebra. To obtain a consistent homomorphism, we 
must enlarge the kernel to include 

Lb={Ai,, Biz,  Bill. ( 5 9 )  
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We then have 

norL LI, = norL Lo 

L,-nor, Lb/Lb-{A, ,0(A,2,  B z 2 ,  Czz)}-o(l ,  1)Os1(2, R )  
(60 )  

and LI  is the algebra represented faithfully. 
The motivation, stressed in this article, for introducing Lie algebras under constraints 

comes from the study of non-bijective canonical transformations. In this respect, the 
mathematical results obtained here are of interest in the determination of invariance 
and non-invariance algebras of dynamical systems (cf Kibler and NCgadi 1983a, b, 
1984a, Lambert and Kibler 1988). They may also be useful in related fields as in 
atomic and nuclear shell theory (cf Quesne 1986) and in such nuclear models as the 
interacting vector boson model (cf Georgieva e? a1 1986). 

A different application that suggests itself concerns symmetry reduction for partial 
differential equations. Thus, let L be the Lie algebra of the Lie group G of local point 
symmetries of a system of partial differential equations (see Olver 1986) and let Lo be 
a subalgebra of L corresponding to a subgroup Go of G .  The construction of solutions 
invariant under the subgroup Go involves a non-bijective transformation from the space 
of independent and dependent variables {xl,. . . , x,, u I , .  . . , u N }  to the space of Go 
invariants {k l , .  . . , &, w ,  , . . . , w N }  ( k  < n ) .  The transformation involves precisely the 
conditions 

X @ ( X , ,  . . . , x,, UI, . . . , U N )  = o  XELo .  (61) 

Hence, the Lie algebra under constraints L, is in this case the Lie algebra of a group 
G I  leaving invariant the space 6f of invariants of Lo. Either G I  or a subgroup of G I  
will then be the symmetry group of the reduced equations. 

Acknowledgments 

One of the authors (PW) thanks the Institut de Physique NuclCaire de Lyon for its 
hospitality during the work on this project. His research is partially supported by 
NSERC of Canada and the Fonds FCAR du Gouvernement du QuCbec. The other 
author (MK)  acknowledges the Centre de Recherches Mathematiques de I’UniversitC 
de MontrCal for the hospitality extended to him during the writing of this paper. 

References 

Barut A 0, Schneider C K E and Wilson R 1979 J. Math. fhys. 20 2244 
Blanchard Ph and Sirugue M 1981 J. Math. fhys. 22 1372 
Boiteux M 1972 C. R. Acad. Sci., Paris B 274 867 
- 1982 J. Math. fhys .  23 1311 
Burdet G, Patera J ,  Perrin M and Winternitz P 1978 J. Math. fhys. 19 1758 
Cornish F H J 1984 J. f hys .  A :  Math. Gen. 17 2191 
Dirac P A M 1964 Lectures on Quantum Mechanics (New York: Belfer Graduate School of Science, Yeshiva 

Duru I H and Kleinert H 1979 f h y s .  Lett. 84B 185 
Georgieva A I ,  Ivanov M I,  Raychev P P and Roussev R P 1986 Int .  J .  Theor. Phys. 25 1253 
Gracia-Bondia J M 1984 Phys. Rev. A U) 691 
Hurwitz A 1898 Nachrichten der Gesellschafr der Wissenschaften zu Gdttingen p 309 

University) 



Lie algebras under constraints 1803 

Ikeda M and Miyachi Y 1970 Math. Japan. 15 127 
Iwai T 1985 J.  Math. Phys. 26 885 
Iwai T and Rew S-G 1985 Phys. Lett. 112A 6 
Jacobson N 1979 Lie Algebras (New York: Dover) 
Kibler M and Nigadi T 1983a Lett. Nuouo Cimento 37 225 
- 1983b J.  Phys. A :  Math. Gen. 16 4265 
- 1984a Phys. Reo. A 29 2891 
- 1984b Croarica Chem. Acta 57 1509 
- 1987 Phys. Lett. 124A 42 
Kibler M and Winternitz P 1987 J. Phys. A :  Math. Gen. 20 4097 
Kustaanheimo P and Stiefel E 1965 J. Reine Angew. Math. 218 204 
Lambert D and Kibler M 1987 Proc. 15th Int .  Colloq. on Group Theoretical Methods in Physics, 1986 ed R 

- 1988 J. Phys. A :  Math. Gen. 21 307 
Lambert D, Kibler M and Ronveaux A 1986 Proc. 14th Int .  Colloq. on Group Theoretical Merhods in Physics, 

Levi-Civita T 1956 Opere Marematiche (Bologna) vol 2 
Mello P A and Moshinsky M 1975 J.  Math. Phys. 16 2017 
Moshinsky M and Seligman T H 1978 Ann. Phys., N Y  114 243 
- 1979 Ann.  Phys., N Y  120 402 
Moshinsky M and Winternitz P 1980 J. Math. Phys. 21 1667 
Olver P 1986 Applications of Lie Groups to Diferential Equations (Berlin: Springer) 
Patera J, Sharp R T, Winternitz P and Zassenhaus H 1977 J. Marh. Phys. 18 2259 
Polubarinov I V 1984 Preprint Joint Institute for Nuclear Research, Dubna E2-84-607 
Quesne C 1986 J. Phys. A :  Math. Gen. 19 2689 
Shaw R 1988 J. Phys. A :  Math. Gen. 21 7 
Vivarelli M D 1983 Celes. Mech. 29 45 
Young A and DeWitt-Morette C 1986 Ann. Phys., N Y  169 140 
Zassenhaus H 1952 Comment. Math. Helu. 26 252 

Gilmore (Singapore: World Scientific) p 475 

1985 ed Y M Cho (Singapore: World Scientific) p 304 


